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ABSTRACT

The purpose of this thesis is to determine and optimize nominal
reentry trajectories for the orbiting stage of the Space Transportation
System (STS) employing a new differential dynamic programming
approach, The trajectories are primarily based on the motion of the
center of mass of the vehicle configuration with secondary attention
given to stability and control which is concerned with the vehicle at-
titude motions about this center of mass, '

The STS reentry is divided into three phases: the hypersonic
reentry; the transition to cruise; and the powered flight cruise, ap-
proach, and landing, Principal attention is directed at the first two
phases in an integrated manner, The Apollo reentry system serves’
as a guide to the hypersonic phase analysis, The difference introduces
itself in the form of a transonic transition to cruise, where the
hypersonic, linear assumptions no longer remain valid. In this low
Mach number region, non-linearities and higher order terms may not
be neglected, and must be reinstated into the dynamic model and the
equations of motion. Aerodynamic control is employed in the form of
a lift vector rolling essentially about the wind axis or velocity vector.
Fundamental constraints include a maximum acceleration, total heat
accumulation and heat rate limitations, and the terminal accuracy
desired for the start of the powered flight cruise,
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New second-order and first-order differential dynamic pro-
gramming techniques J=2 for determining optimal control with wider
application than existing second-variation and second-order methods
are applied. Advantages of such an approach include: lessening the
restriction of maintaining a globally positive definite inverse second
partial derivative matrix of the Hamiltonian with respect to the con-
trol vector, H,  , so that a larger class of problems may be handled

adequately; rapid Convergence of non-linear problems; and stability
of integrations along nominal non-optimal trajectories.

The object is to apply this new technique to the STS reentry
control problem., The determination and selection of nominal trajec-
tories are influenced more by optimization procedures than by
operational considerations. But more important than optimality is
the methodology of design which optimal control provides, Much
attention can then be devoted to the developing trends, perhaps with
respect to some nominal reference., The changeability of the present
NASA STS strawman configuration coupled with the sparsity of aero-
dynamic data in the transonic region makes such a generalized
approach very feasible and desirable, With a prudent choice of state
and control variables, the sensitivity parameters should reveal them-
selves, leading to the desired guidance law, The emphasis is to show
the validity and worthwhileness of such a flexible approach in deter-
mining optimal reentry trajectories,
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NOTATION

a | Difference between optimal cost Jo[_:_'E_(t), t] using
11_0(1) = ufr) + 511_0(T) and nominal cost J [x(t), t] using u(v),
Telt, t
c Critical value for AJ / 'a_[g(tl), t]_]' in nearness test
CD Aerodyﬁamic drag coefficient
CL Vertical trajectory plane component of aerodynamic lift
‘ coefficient '
L Aerodynamic lift coefficient
max _

d Reference distance from vehicle nose to critical stagnation
points in ft,

D . Drage force in 1lbs.

dt Time step duration in sec.
f Time derivative of the state vector equivalentb on right hand

side of state equation

F Terminal cost or pérformance index
g Earth gravitational acceleration equal to 32, 2 ft/sec. 2
g's ' Vehicle acceleration, in units of g
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GF
GF,

GFgq4

L
max

L/D

L/D, L/DI_

m

M

ax

Vehicle configuration factor
Vehicle wing configuration geometry factor

Vehicle wing configuration geometry factor

-Local vertical earth altitude in ft.

Hamiltonian

Atmospheric scale height utilized in calculating the
exponentially varying atmospheric density, in ft.

Total cost function or perfo;mance index

Accrued cost function or performance index

Vertical trajectory plane component of lift force in lbs,
Lift force in 1bs.

Vertical trajectory plane component of lift-to~drag ratio
Lift-to-drag ratios

Vehicle mass in slugs

Mach numbef

Dynamic pressure in slugs/ft/ sec?
Total accumulated convective heating in BTU/ £t2

Convective heat rate in BTU/ftZ/sec.
12



r The rm value of tl encountered in attempting to satisfy

the nearness criteria

R Magnitude of earth centered position vector equivalent to
sum of local vertical altitude and some representative
Earth radius in ft.

R e Representative Earth radiﬁs in ft.
. RN Representé.tive vehicle nc?sé or leading_ edge xjadius. in ft.
S Vehicle refer’ence wing area
t , Time in sec.
tbb | Time of instability in matrix Riccati reverse differential

equation, in sec.

togr 7 Time at which the trajectory first violates a necessary
‘ condition of optimality, or when la( first exceeds 7, in
sec, )
te Terminal time in sec.
to - Initial time in sec,.
th . , . .
to r r— value of 1:1 encountered in attempting to satisfy the
nearness criteria, in sec,
tl | ' Time at which nominal control is replaced by new optimal

control, or the earliest time when the nearness criteria
is satisfied, in sec. '

13



e

1M

(...)

Beginning of time interval where the nominal trajectory
is the optimal trajectory over [tz, tf], but not 6ptima1
over [to, tf]

Control vec"cor

Relative velocity in ft/sec

Free stream velocity

Vehicle weight in lbs.

Quadratic penalty weighting factor for subscripted
quantity

State vector
Down range distance on Earth surface in ft. or n. m.
Vehicle angle of attack in radians

Optimal linear feedback controller maintaining the
necessary condition of optimality

Vehicle flight path angle positive upward, in radians

Small positive tolerance quantity for |a] in determining a
suitable tl :

Local Earth atmospheric density in slugs/ 3
Local Earth atmospheric density at sea level in slugs/ ft3

Standard deviation of a distribution

14



b
%...)

At
(...)
!
(...)
o

)

min

Dummy variable for time in sec.
Vehicle roll angle in radians
Terminal boimdary condition

Denotes an acceptable tolerance or variance in the

. subscripted quantity

A small time interval in sec.

Underf écore deﬂofes a column vector

Overbar’ denotes a nominal quantity

Dot nota‘;ior_l indicates total derivative with respect to time
Superscript o denotes opﬁmal

Superscript * denotes determination of the quantity by

satisfying the necessary condition of optimality

(...){.....)...} Denotes minimization of quantity in braces with

(.ot

B
.. 0]
5(...)

6(...)

respect to barenthesized quantity - |

Denoi:es matrix or vector transposed

De_hotes matrix inverse

I\)enotes absoluté value of quantity

Denote‘s a deviation in the quantity from its reference value

Denotes delta penalty terms

15



5(...) Denotes delta penalty terms
Al..) Denotes a quantity difference

(coo)]

max Denotes a2 maximum desired quantity threshold value for

cost penalization

(.. )]desired Denotes desired quantity range threshold values for cost
penalization

L.. }]( ) Denotes the quant\ity in braces evaluated at the subscripted

value
(... Subscript 0 denotes an initial time quantity
(... )f Subscript f denotes a terminal time quantity
(...) s Denotes partial differentiation with respect to a scalar s
(oo )s Denotes partial differentiation with respect to a vector s
- to yield a row vector '
(o..) s Denotes partial differentiation of a column vector with
- respect to a vector s to yield a matrix of dimension:
(dimension of parenthesized vector) x (dimension of s)
(... )r s - Denotes partial differentiation with respect to column

~ vectors r and s to yield a matrix of dimension: (dimension
of r) x (dimension of s)
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CHAPTER 1

INTRODUCTION

In recent years, much attention has been devoted to the problem
of guiding a lifting -body reentry vehicle through an earth atmospheric
reentry to a desired target safely,  This had to be accomplished
Subject to the total heat accumulation and heat rate limitations of the
spacecraft shielding material, and the maximum acceleration and
load factor limitations of the crew and vehicle structure, It was also
highly desirable to be able to direct the spacecraft to within a certain
radius of a specified target,

These constraints have been examined both individually and
collectively. For a vehicle reentering the earth's atmosphere at a
given velocity, there is a certain amount of peak heating rate and
maximum acceleration that is intrinsic to a system possessing such

amounts of kinetic energy, Parametric studies can only attempt to
‘reduce these by changing their altitude, time, and to some extent
duration of occurence, It seemed desirable to reduce the peak heating
rate by maintaining a higher altitude where the atmosphere is less
dense, but however prolonging the portion of the entry and increasing
the total amount of heat accumulated by the vehicle, It was found to
be far more profitable to descend lower, incurring higher peak heat-
ing rates, but decreasing the duration and thus the total heat accumu-
lated, Maximum load factor and acceleration patterned those of the
peak heating rates quite closely. This again is due to the kinetic
energy of the vehicle, |
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Aerodynamic control of the lifting-body reentry vehicle is
employed by proper directioning of the lift vector. For ballistic re-
entry, experience with the Mercury spacecraft indicated a state-of-
the-art landing point accuracy of twenty to forty nautical miles (1g).
For eritry using low L/D (less than 0.5), experience with the Gemini
spacecraft indicated a state-of-the-art landing point accuracy of ap-
proximately four nautical miles ( 1o0), where the navigation error is
N-1 ' Results of the Apollo flights to
date indicate even smaller miss distances™ 2, with the Apollo 12
C-3 The L/D for Apollo was
about 0,3, with the maximum amount of 1lift limited by the vehicle

about three nautical miles (1l¢)
flight missing by about one nautical mile

trim angle of attack, .

In the case of the STS orbiter or shuttle vehicle, the maximum
capable amount of lift is to be determined by the angle of attack history.
The vehicle configuration is similar to a conventional airplane, af-
fording a potential for relatively low development costs. The basic
shuttle concept is depicted in Fig, 1.1, taken from the Manned Space-
craft Center (MSC) Shuttle Status briefingsM—l, Both the booster and
orbiter stages employ airplane type practices., The primary concern

of this thesis is with the reentry of the orbiter stage,

Because of the critical transonic transition to cruise maneuver,
the hypersonic linear analysis is no longer valid for the whole duration
of the orbiter reentry as it was in the Apollo reentries, Non-linearities
and higher order terms can no longer be neglected. For this now more
complex situation, the problem of determining optimal nominal refer-
ence trajectories demands a more efficient optimization procedure,

The lﬁting-body atmospheric reentry formulation is already quite
complex, even with the linear hypotheses, Coupled with the fact that
much of the vehicle aerodynamic characteristics are unknown due to
the non-existence of a true test model, and non-linear as well, the

problem is further complicated,

18
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The utilization of a second-order or second-variation functional
optimization technique seems the logical solution, and there have been
several of these techniques which have been applied to the non-linear
reentry problem, However, there arises the question as to the worth-
whileness of such an approach, basically from an efficiencfy point of
view, The non-linear reentry problem was met with varying degrees
of success, and problems arose with the instability of integrations,
the rate of convergence to the desired solution in terms of the number
of iterations and the computation time required, and even the applica-
bility of certain of these techniques, There emerged, from the notion
of differential dynamic progrémming, new second-order and first-
order techniques for determining optimal control with wider application
than existing second-order and second-variation methodsJ-z. Using
this method, the fact that the inverse second partial derivative matrix
of the Hamiltonian with respect to the control vector, Hu w Was not
required to be globally positive definite allowed a larger Class of problems
to be considered. The new step-size adjustment routine facilitated
the rapid convergence of non-linear problems and ensured the stability
of the backward integration along nominal non-optimal trajectories,

The variables of the backward integration are themselves the first and
second order influence functions, and lead to the desired perturbation

guidance law,

The object is to-show the applicability of this new approach to
the non-linear STS reentry problem, The main concern is more with
determining trends and influence factors than with solving for the op-
timal solution, which optimal solution depends on the form of the cost
functional or performance index and the weighting of the state and con-
trol parameters, which in turn depend upon the information sought,
Numerical studies further the understanding of maneuvers, but the
number and variety of boundary conditions and constraints preclude a
very effective use of an experimental "open loop'" approach to optimal
nominal trajectory determination. Optimal control techniques reduce
the guess work affording a consistent framework within which to gen-

erate and evaluate control strategies S-1.

20



CHAPTER II

THE REENTRY FORMULATION

2.1 Reentry

The atmospheric reentry analysis is primarily concerned with
the motion of the center of mass of a lifting-body vehicle, The attitude
motions of the vehicle about its center of mass are usually not incor-
porated directly into the formulation, but instead introduced through
~ penalty functions or other means, The reentry phase begins at an al-
titude of 400,000 feet above the surface of the Earth, although the
altitude at which the aerodynamic forces become significant, depending
on the velocity and geometric characteristics of the vehicle, occurs at
about 300, 000 feet above the Earth's surface,

For the purposes of trajectory determination, the Earth is
modelled as a non-rotating homogeneous sphere, surrounded by an ex-
ponentially varying dense atmosphere, The only aerodynamic forces
taken into account are the lift and drag of the vehicle, The other forces
considered are due to the gravitational attraction of the Earth and the
centripetal acceleration of the vehicle,

For the heating model, only convective heating is taken into
account, Radiative heating may be neglected because the vehicle velo-
city is less than 30, 000 feet per second., The critical heating locations
for such a vehicle configuration are at the nose stagnation point, the
wing leading edge,' the aft wing region, and the three dimensional apex
area behind the nose stagnation region, as illustrated in Fig, 2.1.1,
The skin temperature at any point of these regions can be calculated

by means of heat-balance equations,

21
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Figure 2.1.1 Critical Heating Locations on a Reentry Vehicle
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2,2 Equations of Motion

Consider the two-dimensional tréjectory planar motion of a
lifting -body reentry vehicle as depicted in Fig, 2.2,1, The dynamic
equations of motion of the center of mass of the vehicle system con-
figuration along and orthogonal to the velocity vector in local earth
coordinates are: '

2
m% - -D -mgsiny + m Y sinny (2.2.1)
dt
d v2 ‘
m—(vy) = L -~-mgcosy + m— cos ¥ (2.2,2)

dt

The remaining equations of motion are the kinematic relationships
describing the motion of the vehicle center of mass:

dx R
m-—-£=mvcos_'y _£ (2.2.3)
dt R
mgh=mvsin'y (2.2.4)
dt

Assuming that the irelocity is essentially constant over the duration of
an integration time step, and introducing the following aerodynamic

relationships,
D:.l.pvzscD (2.2.5)
2
L=2pvisc, (2.2.6)
2

where L represents the trajectory plane vertical component of the
lift force, along with the relationship:

R:Re+h . (2,2.7)

we rewrite the equations of motion in the particular form:
23



local vertical

vehicle

local horizontal

downrange h
reference

Figure 2. 2.1 Vehicle Trajectory Coordinate Geometry
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_ VcoS y

;’gr (2.2.8)
(1+h/R_)

L J i . C g 2
v--lpvz D - g sinvy T - siny (2.2,9)

2 w/s (Re+h) :

C,g

¥ ....l.pv L -8 cosy + cos vy (2.2,10)

2 w/s v (Rgth) '

h = vsingy : (2,2.11)

Equations (2.2.8) - (2.2.11) are the basic equations of motion for the
lifting -body reentry prooblem in local coordinates, where X, represents
the downrange, v is the relative velocity, y the flight path angle mea-
sured positive upward from the local horizontal, and h the local vertical
altitude, S is the representative vehicle wing area, p the local density
of the atmosphere, and Re some representative radius of the Earth,

There are many ways of representing these equations of motion,
each with its particular advantages and peculiarities, The geometry of
the situation suggests that spherical or polar coordinates are the more
natural, Chapmanc-1 extends this concept with the introduction of a
special Z transformation variable, essentially to reduce the dynamic
equatibns of motion to a single expression, From a purely mathematical
 point of view, this is aesthetically pleasing, and the computations are
considerably simplified by the use of acceleration (density-altitude)
inputs. However, the approximations assumed in that formulation are
contrary to this author's intentions to include all the important terms
in the dynamic equations of motion for this particular non-linear atmos-
pheric reentry problem formulation, Also, the form of Eqgs. (2.2,8)-
(2.2.11) is simpler to understand, and the physical significance of 4
each quantity is much more readily identifiable, Here, mathematical
and computational efficiency have been sacrificed in favor of compre-
hensibility. 25



The convective heat rate equations or heat flux equations for
the four critical heating areas are:

. / 0.5 3.15
VR ‘Po 26,000

for the nose stagnation region,

. v 0.5 3.15
4 = 2800 3(_9_) ( v ) oF

(2.2.13)
va' P 26, 000

1

for the apex region,

i ° 0.5 3.15
qp = 220 (—”-) - GF,  (2.2.14)
/R "N" Po 26,000

for the wing leading edge, and

p>0.5/

8,800
4 (Po

3.15
GF, (2.2,15)
C va > 3

26,000

for the aft wing region, where d is the distance from the nose, and GFl’
GFz, and G;F3 are a vehicle configuration factor and geometry factors

for the particular vehicle wing configuration, R,, is the representative

N
nose or leading edge radius, while Po is the sea level atmospheric

density.

The total amount of convective heat accumulated is simply the
integral of the convective heat rate over the total time interval of the
reentry:

by

qc=§ q dt - (2.2.16)
Yo

The acceleration in g's assumes an especially simple form:

- 1lm 2 2
g's -Eé——z—\/LmaX+D (2.2.17)

26



or in another more useful form;

g's = 4 \]ch +c ? ! (2.2.18)
w/s max
where q is the dynamic pressure represented by:
q =1’.pv2 (2.2.19)
2
CL and L are the maximum coefficient of lift and maximum lift
max max '

force for a particular angle of attack, respectively, These are related
to their trajectory plane vertical components by the following expressions:

L L

C, =C cos ¢ (2.2.20)
max ‘ :

L = Lmaxcos¢ : (2 .2.21)

Here, ¢ is the roll angle or bank angle about the velocity vector. A
perhaps more illuminating expression is of the form:

L/D = (L/D)___ cos ¢ (2.2.22)

where (L/D )ax 1S determined by the angle of attack, a.

27



2.3 The Apollo Hypersonic Reentry Concept

M-5 Apollo reentry concept as a starting

Selecting the proven
point, we recall that for its equations of motion, Egs. (2. 2.8) -
(2.2,11) were employed assuming a small flight path anglé, v, and
neglecting the component of centripetal acceleration along the velocity

vectorL'4’ M'4,

In the case of the Apollo earth orbital reentries, the
initial velocity at entry interface (h = 400, 000 ft, ) was close to
26,000 fps. Thus the portion of the Apollo reentry that pertains to the
STS orbital reentry problem with an initial reentry velocity near
26,000 fps is essentially the final phase which is entered into on the

initial Apollo entry at velocities less than 27,000 fps, G}

, and where
the closed loop guidance law is a function of perturbations about a pre-
stored nominal reference trajectory with velocity as the independent

variable,

The method of adjointsM-4’ L-2

was utilized to generate such

a final phase reference trajectory for the Apollo reentry, with the ad-
joint variables becoming the pertui‘bation feedback gains in the control
law. The control is expressible as a commanded L/D which specifies
the commanded roll angle, The out of plane component of lift is essen-
tially nulled by a lateral logic scheme whereby the lift vector is switched
from one side of the trajectory plane to the other, This reference
trajectory was also chosen to match a desired down-range so that by
following it the terminal error in range could be nulled, while relying

on the lateral logic to zero the error in track.

The selection of the Apollo nominal reference reentry trajectory
was greatly influenced by operational considerations, The employment
of a reference trajectory was made to render the overall reentry guid-
ance and navigation system less sensitive to large input errors, and
~ thus less Susceptibnle to blunderous decisions on the part of the steering
logic. Of course, the obvious disadvantage of using a pre-computed
reference trajectory is in the reduction of its capability and flexibility
to adapt to markedly off design conditions. Here maximum flexibility

has been sacrificed in favor of computational simplicity and efficiency.
28



2.4 The STS Orbiter Reentry Concept

The deorbit burn maneuver for the STS oroiter is designed
nominally to occur from a 55 degree inclination, 270 nautical mile
circular orbit, The vehicle then enters the atmosphere at a proposed
60 degree angle of attack, The reasons for-this high angle of attack
are as follows, One major benefit is a reduction in the thermal pro-
tection system required. High angle of attack reentry in the regidn of
peak heating and maximum acceleration greatly reduces the heat pro-
tection requirements for the lower surfaces of the body. Being in the
proximity of the maximum lift coefficient yields low reentry load factors
and low peak heating rates, Such a high drag configuration results in
a shorter reentry time duration leading to a lower total heat accumula-
tion, Vehicle stability considerations also favor such a high angle of
attack blunt body reentry from orbit,

The equations of motion are as indicated in Eqgs. (2.2.8) -
(2.2.11), with all of the terms retained. The actual control is the
trajectory plane or vertical lift or L/D. But these are functions of
both the angle of attack which determines the maximum capable amount
of lift, and the roll angle which determines the trajectory plane component
of this available lift, The redundancy or overlap here involves a trade-
off which is influenced by vehicle configuration stability considerations,
One method of eliminating this apparent redundancy is to consider the
in-plane vertical lift as the principal control variable, However an
additional parameter is required in order to evaluate the total acceler-
ation, This is the roll angle, The angle of attack and roll or bank
angle are also natural control quantities for such a conventional airplane
type vehicle as the STS orbiter,

The investigation for the STS configuration is similar to the
final phase analysis of Apollo, employing a perturbation scheme about
a reference nominal trajectory. The difference lies in the fact that not
oniy will first order perturbations be included in the control low, but
cross coupled terms and second order terms will be taken into account

depending on the values of their influence functions. These influence
29
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functions are direct results of the optimization process that yields the .
optimal nominal reference trajectories, A cost functional or perform-
ance index is fashioned to include quadratic penalty terms for heat and
load limitations and terminal inaccuracies, The object is to reduce
this cost functional with respect to the control variables, éngle of at-
tack and roll angle, Stability considerations may be introduced either
in the form of penalty functions for activity in unstable regions (soft
constraints ) or as hard constraints which are not to be violated.
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CHAPTER III

A DIFFERENTIAL DYNAMIC PROGRAMMING APPROACH

3.1 Differential Dynamic Programming

For a dynamic system‘described by the non;linear ordinary
differential equations or system state equations of the form

X (t) =_f_[:§m, u(t), t] (3.1.1)
with
(3.1,2)

the criterion of optimality is the minimization of the cost functional or

performance index

tf'

I(xge tg) = § L[:_((t), u(t), t]dt + F[§(~tf), tf]
t | '

0
(3.1.3)

where L [}_{_(t), u(t), t] can be thought of as the accrued cost along
0 to t., and F[_}E(tf), tf] as the terminal

cost, Both are sealar functions of the indicated variables.

the trajectory from time t

Generalizing to any arbitrary starting point X (t), and proceed-
ing optimally to a terminal hypersurface defined by:

b [g:_(tf), tf] =0 (3.1.4)
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B-1

in the manner of Bryson and Ho , the unique optimal value of the

performance index is the optimal return function

5° - J°[§_(t), t] (3.1.5)

or
. te
min
J°[§<t), t] = u(t) {Fl:ytf), tf]+ ) L[y-r), u(r), ‘r]d'r}
t
, . |

(3.1,.6)

with the boundary condition

J°|:>_<<t), t] - F[:_c_m, t] (3.1.7)

on the hypersurface zb[}_{_(t), ’E] = 0. The superscript o denotes optimal,

To derive the partial differential equation satisfied by the opti-
mal return function, assume that J° Eg_(t ), ﬂ exists, is continuous,
and possesses continuous first and second partial derivatives at the
points of interest. If the starting point is x(t), employment of a non-
optimal control u (t), over a small time interval At moves the system
to another point described by

g(t)+£[§(t), u(t), t]m (3.1.8)

at time t + At. TUtilizing optimal control from this point on, the return
function is written to first order

Jl[gm, t—'= J°"§<t) +5[§<t>, u(t), t]at, ’t+At]

+ L[gm, u(t), t] At (3.1.9)
‘ 37



Since a non-optimal control is employed over the time interval At, it

J°[§(t), t] < JT;_(t), t] B (3.1.10)

If E(t) is chosen to minimize the right hand side of Eq. (3,1,10) as

is true that

given in Eq. (3.1.9), we obtain

’ min — | : ‘
J°|:§(t), t] - u(t) {J°L§(t) +f[§_(t), u(t), t]At, t+At]
+L[gc_(t>, u(t), t]m

Expansion in a Taylor series about E(t) and t leads to

(3.1.11)

x@), t | =u(t) ] Lgi_(t), tJ + 9 ¢ l_!_c(’c), u(t), t | at
0x

o — = -
+ 89 At LL_}_{_(t), u(t), tJAt (3.1.12)

ot

Taking the terms which do not depend explicitly on u(t) out of the braces
and letting At approach zero, we obtain

‘'m0 min ' .0 ' -7
D Ay Ll:zg_(t), u (t), t]+ ?Lj__l:i(t), u(t), tJ!
. X

ot 0x
(3.1, 13)
After defining the Hamiltonian
— ) — — (o] po— —
H| x(t), uct), 3, t | = L] xt), uct), t | +2 ¢ | x(), u(t),t
x(t), 1), = x(t), u |2
| (3.1.14)
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we can write the Hamilton-Jacobi-Bellman partial differential equation
as follows:

— o ’
_8J =H°L§(t),§.{_,t]  (3.1.15)

ax

along with the boundary'condition of Eq, (3.1.7), where

min —
H°[_:5(t), as° t]= u(t) | H

x - 0X

o]
x(t), u(t), 2, t] © (3.1.16)

Equation (3. 1. 16) yields the _1_1_(t) = 11_0 (t) which minimizes the Ham-
iltonian

0
H| x(t), u(t), 2, ¢
- ax .
(o}
in the global sense, while holding x (), %‘—I—; and t fixed. This is

equivalent to the Minimum Principle, In the formulation, the quanti-
ties

o e}
?_.‘.I._. and ?.J__
ot ax

~are understood to be evaluated atExO t), t].

The quantity which we are seeking to determine is the optimal
control history Eo (t), te BO’ tf]. Applying a nominal control a(t), -
te EO’ tf] , to the system differential Eq. (3,1, 1) subject ?:o the initial
conditions of Eq. (3.1,2), and integrating yields a nominal state his-
tory Z(t), te[t; t;]. Equation (3.1.3) is utilized to calculate the
nominal cost, J(x,., to), for this nominal trajectory, The nominal
histories include the first initial estimate and all the subsequent tra-
jectories genérated and updated by the state equations, Each iterative
ﬁpdating procedure'yields a nominal trajectory that approaches closer
to the optimum. The final nominal updating should produce the optimal
solution to within a prescribed tolerance, If perturbations of the state
and control variables are introduced about the nominal state and control

histories in the manner described by Jacobson's paperJ'2

according to.
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x(t)

"

T(t)+ 6 x(t) (3.1.17)

H

u(t) = T(t) + su(t) (3.1,18)
where 6x (t) and su(t) are not necessarily small quantities, the system
state equations, the cost functional, and the Hamilton-Jacobi-Bellman
equation are exactly represented by: '

4 [z +a§<t)]= i[g(t) +6x(t), W(t) +su(t), t]

dt
(3.1.1‘9.)
with
X(tg) +6x(ty) = x4 (3.1.20)
tf _
Ny tg) = J L[ E(®) +ex(t), T(t) + suh), t]dt
tO -
+F[§<tf>+6z<_<tf>, tf] I (3.1.21)
and
53° min { _
ST (E(t) + 6x(t), = su(t) LI:'3_<(t)+6§(t), T(t)+su(t), t]
ot v

3J° — | - _ \ l
S (E (D) +6x (1), 1) £ E(E)+8x(2), T(t)+ou(t), t

. (3.1.22)
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The nominal trajectory is now the reference trajectory about which the
perturbations are taken,

If the optimal cost functional is sufficiently smooth to permit a
power series expansion in 6% (t) about x(t), and the difference between

the optimal cost functional and the nominal cost functional is expressed

a°[_§_('t), t]}: J°["g(t), t] - F[E(t), t] (3.1.23)

where the optimal cost functional JOE(t), t] results from employing
the optimal control

as

W (1) =T(7) + 8u°(7), Te[t, tf] (3.1.24)

and the nominal cost functional T[}E( t), t'] obtains by using the nominal
control

T, Te[t, tf] (3.1.25)

the Hamilton-Jacobi-Bellman equation as expressed by Eq. (3, 1,22)
may be rewritten in the following form:

_aT a8 al:s_z(t), t:] - L ext) - LaxmT L(a ) ex(t)
at at at X 2 ot XX
Hmin I _ _ .
=5__(t) 'L|:§(t)+6§(t), E(t) +5E(t)’ t]+(J§+J§§6§(t))
L
£[§(t)+6§_(t), T(t) +su(t), t:]} (3.1.26)

where some partial differentiations are noted by subscripts, and g-'{- R

T and J__ are all evaluated at [x(t), t]. A more detailed derivation

is presented in Appendix A,
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Equation (3,1.26) is a good approximation only for small values
of 6x(t) because of the truncation of the higher order terms in éx (t ).
Since 6§(t0) = 0, the 6x(t) in the interval E:O, tf] is due solely to the
6u(t) acting through the perturbed state Eq. (3.1.19), The superscript
o has also been eliminated, as the modelling of ‘the cbst functional
locally by an approximate second-order expansion requires a sufficiently
small éx(t). 6u(t) is selected in such a way as to insure only appro-
priately small values for §x(t) to allow for optimality to a specified
tolerance, Therefore, should any 6% (t) be allowed, the superscript
notation denoting true optimality starting from the state given by Eq.
(3.1,17), i(t) + éz_g(t), would not be completely justifiable, The form
of the Hamilton-Jacobi-Bellman Eq, (3.1, 26) can now be utilized to
determine optimal control histories u® (t),te [ to, tf], by successively
improving the current nominal control histories u(t), t, t e[to, tf].
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3.2 A New Second-Order Algorithm For Determining Optimal
J-2

Control For Unconstrained Problems

The new second-order differential dynamic programming ap-

proach by Jacobson? ~2

is another version of the backward sweep method,
One important point is worthy of emphasis, The restriction of main-
taining a globally positive definite inverse second partial derivative
matrix of the Hamiltonian with respect to the control is lessened by first

minimizing H [Z‘_(t)’ E(t), Jx, t] in the control space to yield an im-

proved minimizing control Ef({). All quantities are then evaluated at
u*(t). Clearly, requiring H__ to be positive definite for this im-
proved control is much less ~ = confining than demanding global con-
vexity of the Hamiltonian throughout the control space. The difficulties
due to nonconvex nominal solutions that occur with the backward sweep
method are thus averted,

A well known condition of optimality is that

H, = [zm, u” (t), Ty tJ= 0

Perturbations in the state and control are then introduced about X (t)
and 9_*(1:) in order to obtain a linear feedback relationship between

6x (t) and é6u (t )T, while maintaining the necessary condition of opti-
mality,

Returning to the Hamiltonian-Jacobi-Bellman Eq, (3.1,26), we
note that it is valid locally in the state space due to small 6x (t), but
globally valid in the control space, Setting 6x (t) to zero for the moment,
we may realize the required improved minimizing control by minimiz-
ing H [?E(t)’ u(t), Jx, t] in the control space to obtain

w(t) = T(E) + su” (£) (3.2.1)

F . sk ) -
éu(t) now referenced about u (t), and not about u(t) as in Eq, (3.1, 18).
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Upon reintroducing 6x(t) in Eq. (3.1.26), minimality of the right hand
side of the Hamilton-Jacobi-Bellman equation is maintained by choos -
ing a suitable su(t), but referenced about wk (t) rather than about E(t),
The size of 6u (t) must be limited so that it does not produce large
values for 86X (t). This is to insure the validity of the second-order
expansion of the performance idex as mentioned previously, The
Hamilton-Jacobi-Bellman equation may now be expressed as:

9T -2 | .ley ‘} 2 '
R (t), t - —(J) éx(t)
at ot | L“ J at £~
) 3 min |

-—6§(t)T — (I ) ex () F 5u(t)i H[E(t) +6x (t), wk(t)
2 at XX - - = = =

A ey

reult), I+ J__ 6x(t), t]} |

(3.2.2)
where the Hamiltonian is as defined in Eq, (3.1,14),
The following necessary optimality condition
Hg[yt), wE (1), T, t] = o, (3.2.3)

is true, since u (t) was chosen to minimize H, Expanding the right
hand sjlde of Eq, (3.2.2) about )_r:(t) and u* (t) according to Eq, (3,1.17),
x(t) = x(t) + 8x(t) (3.2.4)

and

u(t) = wk(t) + su(t) (3.2.5)

and differentiating the result with respect to éu(t) and employing

Eq. (3.2,3), we then assume that §x(t) is sufficiently small to permit
- 39



equating the coefficient of the first order term in 6x(t) to zero (second-
order terms in 65(1:) for the Hamiltonian if 6§(t) and su (t) are of the
same order), This yields the optimal linear feedback controller

su(t) = B ox(t) (3.2.6)
which maintains the necessary condition of optimality for small 6x(t):

Hz[g(t) F O (1), () + ou(t), T+ Ty 6x(1), t] - (0, 0)
’ (3.2.7)

The term in Eq, (k3 2,6) which is chosen to minimize the expanded ver-
sion of the right hand side of Eq. (3 2,2) is found to be

T
[ ] Hyx _u JE) (3.2.8)

Note that all quantities are to be evaluated at [5_:_'(1: ), wk(t), t] unless
otherwise specified,: Upon further substitution and rearrangement of
the expanded version of the right hand side of the Hamilton-Jacobi-
Bellman Eq., (3.2,2), and then equating similar powers of 6% (t) with
the right hand side of Eq. (3.2,.2), we find that, for sufficiently small
values of 6x (1),

SRR, o (3.2.9)
ot ot
-_a';(J_) = H I L (3.2.10)
5 _ T ] T, T
“oe Uax) T T T xS Phax Ty T
_1 (302111)

, T
[Huu:] (Hux +-f-u Jxx)



where all terms are to be evaluated at E(t), u* (t), t] .

Defining full differentials as explained in Appendix B, we write
the required reverse differential equations:

-a=H -H[:g:‘_(t), T(t), I, t] (3.2.12)
3, = H,+ JEE(;f_.—ﬁl—§(t), T, q) (3.2.13)
. v J
.. » _1
. T ) T, .\T 7
Vxx T et Txx T Texdx T Mux s Ixx! “ fay |
(H, _+£ 7 ) (3.2.14)
uxou Uxx! -

— —

where all quantities are to be evaluated at [g(t), uk (1), ’E] unless

otherwise specified, The dot notation implies full differentiation of the

indicated quantities with respect to time, Further details are to be

found in Appendix B, Equations (3,2, 12) - (3,2.14) are the reverse

differential equations to be integrated backwards from the terminal time
tf, subject to the following terminal boundary conditions:

a(t,) = 0 ' (3.2.15)

J)_{_(tf) = Ff[g(tf)’ tf] ’ (3.2.16)
Txx ) = F?_gﬁ-“f” tf] (3.2,17)
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These boundary conditions are derived in part from the fact that

J[g(tfx tf] - F[g(tf). tf] (3.2.18)

Thus the new control to be applied to the system state equations is ex-
pressible in either the form

u(t) = wk(t) + Bsx(t) (3.2, 19)'
or |
u(t) = T(t) + ou" (1) + B ox(t) (3.2.20)
or simply | |
u(t) = u (t) + su(t) | (3.2.21)

over the time interval [to, th i
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3.3 A New First-Order Algorithm For Unconstrained Problems

A special case of the second-order method']"2 expands the per-
formance index or cost functional only to first order:

J[gm £ 5x (1), t] - 3’[3?_(1:.), t] +a+ I sx(t)
| T (a.8.1)

Thus, the following reverse differential equations are obtained:

-a=H - H[g(t), T(t), I, t] (3.3.2)

—

~Jy = H’.‘. (3.3.3)

where all quantities are again evaluated at Lg(t), wk (t), t J unless
otherwise specified, ’

Equations (3,3.2) and (3, 3, 3) are subject to the terminal bound-
ary conditions

a(t) =0 (3.3.4)

I, () = Fi[ytf), th (3.3.5)
The new control is then found to be

u(t) = v (t) (3.3.6)
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3.4 A New Step Size Adjustment Method® ~2

The 6x(t) generated on the forward state integrations by the new
improved minimizing control variable must be small enough for the
second-order expansions to be valid, To insure this, merely scaling
6_11* (t) down by a multiplicative factor ¢, where 0 <¢ S 1, is not per-
missible, since the new improved minimizing control uk (t) as expressed
in Eq. (3.2.1) is already embedded in the reverse differential Eq.
(3.2,12) - (3.2,14). Furthermore, the fact that global convexity in the
control space is not required qof H precludes such a linear interpolation
between u(t) and u*(t) = E(t) + sux (t).

If we substitute the new control of Eq, (3.2,21) and Eq, (3.1.17)
into the dynamic system differential Eq. (3,1,1), we obtain

;‘-’{ g<t)+a§(t)] -1 [gm +6x(t), u'(t) + su(t), t]
| (3.4.1)
where
x(t)) +éx(ty) = x, (3.4.2)

As before, the 6x (t) generated by Eq, (3.4.1) is due only to su” (t)
so that 6§(t0) = 0. An inappropriately large §x (t) indicates that E* (t)

is not the optimal control which we are seeking, to a certain tolerance,

One method of constraining the size of 6x(t) is to restrict the
time interval over which Eq. (3. 4.1) may be integrated., If the nominal
state history ~E_(’c) is followed from to to tl’ where tl e[to, tf], then
6x(t) =0forte [to, t,|. Integrating Eq. (3.4. 1) over a short enough
time in’cerval{l;tl, t_f generates a sufficiently small 8x (t) to maintain
the validity of the second-order expansions., This is true for any value
of sux(t), We consider §x(t) to be sufficiently small enough provided

that the predicted improvement in cost over the time interval [tl’ tf ] ,
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t
_ 1
,aLg(tl), tl]H t\f : H -H[_‘g(t), u(t), 3, t:” at]
: } x
| o (3.4.3)

| P * '
employing the control u(t) =u (t) +éu(t) =u (t)+8 (t) sx(t),
te tl, 1:f , is sufficiently near the actual improvement in cost over -
. the same time interval:

AJ=:;[§H1Lt1] -J[gﬁlLtI] (3.4.4)

Sufficiently near entails utilizing a "'nearness criteria" which is satis-
fied when

- AJ > C (3.4.5)

aLEHILtl]

where 0< C< 1. It is the acceptance or rejection judgement here which

determines an appropriate tl and plays a major role in the general ef-
ficiency and effectiveness of the overall optimization procedure,

To subdivide the time interval Lto, tf , we start with tl =1
and if a reasonable reduction in cost A

O’
is obtained, we proceed with the
main algorithm, If a reasonable AJ has not been found, t

1 is updated in

the following manner:

t = .5(tf+t (3.4.6)

1~ %0, r+1 0,r)

where to 0= v-tf to allow t to be equal tot, = 0,

0,1 0

tl must never be allowed to fall into an interval t2, ’cf ,
tye [:tO,- te 7], where the nominal trajectory is the optimal trajectory
overEtz, tf] , but not optimal over [to, tf] . This would yield a
6x(t) =0forte Etl, tfj, since ux (t) = u(t) for te Ltz, tI.J. No
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reduction cost would ensue even though the trajectory is non-optimal
over the whole time interval Eto, tf:] . Realizing that a Eg(tf), tf]

= 0, we may record the time t = t_;. at which a Cx(t), t7] differs
from zero or in practice becomes greater than a small positive quantity,
n, during the reverse integration, Thus

a[k_‘(t), tJ =0 for te[teﬁ, th.

Equation (3. 4. 6) is then rewritten for this particular case as:

tl =.to,r+1 = '5 (teff+t0,r) (3.4v7)

where t t

0,0~ eff

Now the interval Eto, t eff] rather than Eto, 1:f :] is subdivided
to find tl. As the nominal trajectories become more nearly optimal,
the interval where a [: g(t ), t j = 0 approaches the total time interval
Eto, te "] so that in effect t off 3PProaches t,. On the optimal trajectory
we then have

|a[g(t),t]|<n, te[to. tf] (3.4.8)

and teff = to.

During the reverse integration process, the variables of integra-
tion may become unbounded at some time t, b € Eto, teffj . In this

case, the time interval Etb, teff:l is subdivided to determine tl according
to

Y =t,r < 'SI:téff * 1, o] (3.4.9)
where tO, 0= th - teff to insure that tO, 1= tb' Such a strategm aids in

avoiding conjugate points or instabilities that frequently arise in the back-

ward integration of the reverse matrix Riccati differential Eq, (3.2.14).
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Again, as the nominal trajectory approaches the optimal trajectory,
0 In the end tb = tO so that the variables of the reverse
integration are bounded over the total time interval of interest [_'to, tf] .

tb approaches t
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CHAPTER IV

FORMULATION OF THE STS REENTRY PROBLEM

4.1 Equations of Motion and Heafing Relationships

For the non-linear STS lifting-body reentry problem the equations
- of motion are as given by Eqgs, (2,2,8) - (2,2,11):

x, = —2CO5 Y (4.1.1)
T (1+n/R))

vi= 4 gCp + (-g+ —— ¥ ) sin y (4.1.2)
w/s (Re+h)
—; =9.[.Y.gCL+(-g/V+-—'--—Y-———)COS‘y (4.1, 3)
W/S ’ (Re+h)
h = vsiney (4.1.4)
where
q=3p7 | (4.1.5)
is the dynamic pressure,
' 1 2

is the drag force, and



1 2
L=gpv'SCp (4.1.7)

is the lift force in the vertical trajectory plane, The maximum coeffi-
cient of lift and the corresponding maximum lift for a particular angle
of attack and Mach number are related to their vertical components,
respectively, by:

C, =C cos ¢ | (4.1.8)
L Lmax

L

Lmax'cos ¢ ‘ (4. 1.9)

where ¢ is the roll angle about the relative wind axis, Introducing a
convenient vector notation, we have

— xr(t) -
v(t)

x(t) = . ' (4,1.10)
- v (t)

h(t) |

for the state vector, and

s(1) |
u(t) = : (4,1,11)
= a (t)

for the confrol vector, The state equations are then written as;

P e

x_(t)
. v(t) -
x(t) = | . iy [xm, u(t), t | (4.1,12)
= sty | L=
| (1) |
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where X , v, v, and h are as depicted in Eqs. (4.1.1) - (4,1.4),

The convective heat rate relationship is given by Eq, (2.2,12):

0.5 3.15

q, =280 (o) (L) (4.1,13)
VR Po 26,000 ' -

N
or

E;c = .61433466 (RN‘)'O'5 (p'/po)o'5 (L3 19
: 1000 (4.1.14)
for the nose stagnation area in units of BTU/ £ /sec,, where v = v, is
the free stream velocity, Radiative heating is neglected for the veloci-
ties of interest which are less than 30,000 fps. The total convective
heat accumulation is simply the integral of the heat flux, denoted by:

qc=§&0dt C (4.1.15)

ty

in units of BTU/ft?,

51



4,2 The Quadratic Cost Functional

The performance index or cost functional to be minimized is
given by Eq. (3.1, 3):

I (g, tg) = j L [{(t). u(t), t]dt +F [_zg(tf>, tf]
) : |
0 .

(4.2.1)

where the accumulated cost along the trajectory is denoted by the quad-
ratic

w— —— T p— —
6q, Wg, 0 0 0
6g's 0 Wwg's 0 0
L[:x(t), u(t),t:] -1
- - 21 &q 0 0 Wgq 0
—~ mnemasay |
_Vach i 0 0 0 2yWg,
§q
sg's
4
5q (4.2.2)

or

L = l{,sq W;1 521 + 6g's Wg's 6g's + 6q Wq 6q}+ \]Wq 5q
2 c c ‘¢ c ¢
(4.2.3)

and the terminal cost is given as:
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6xr Wx | 6x
- T 8v 0 &v
F| . th =2
2 5% 0 oy
sh 0 éh
(4.2.4)

or

=%—{6x Wx_ 6%+ 6VW, OV + 8y W, by + ohW, 6h}
(4.2.5)

The convective heat rate "penalty" is expressed as

.

5a, = 4, ‘ (4.2.6)f

TThe delta notation is adopted to allow for the pos51b111ty of maximum
threshold values for q below which virtually no penalty is imposed,
The expression

q, - 9 ] ifq,>q, |
6& - ¢ ¢ dmax ¢ C-J max
¢ 0 otherwise
would be utilized were it not for the discontinuities in the second deriv-
atives of 8q. when used in the reverse differential equations. As Eq.
(4. 2.6) stands, it is equivalent to employing a threshold value

q ] =0, Similar comments apply to fg's and g in Eqs. (4.2.7)
max
and (4.2.10),
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where élc is the convective heat reate given by Eq. (4.1, 13), Similarly
the acceleration or load factor 'penalty" is expressed as

ég's = g's ‘ (4.2.7)

where the actual acceleration is given in g's by

1 2 2,0.5
g's = ——— (L +D%)" (4,2.8)
32.2m max :
or
gs =3 (c?+c? )P (4.2.9)
w/S max
The dynamic pressure "penalty' is expressible as |
6q = g (4.2.10)

where q is the dynamic pressure given by Eq. (4.1.5)., The total ac-
cumulated convective heat ""penalty' is expressed as

Fa,(t) = g, (t) (4.2.11)

where qcfis the total convective heat accumulated according to Eq.
(4.1.15). The terminal downrange inaccuracy ''penalty' is given by
6%, = X

r Xr]desired (4.2.12)

where x, is the downrange travelled and x is the downrange

r:' desired
desired, Note that positive 6%, denotes overshoot in range, and nega-

- tive 6x , undershoot, Similarly

6v=v—v] (4.2.13)
desired
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6y =7 --7] | (4.2.14)
desired

6h=h-h] . ' (4.2.15)
‘ desired

denote terminal error ''penalties’ in velocity, flight path angle, and
altitude,- r'espectively, The terminal state values desired are not neces-
sarily single valued, as a deadband or range of terminal values may
also be acceptable, and thus not penalized, This is a very useful notion
for the particular atmospheric reentry problem at hand, as the subse-
quent powered cruise flight may commence from a specified range of

initial conditions on the states.

The penalties are scaled by the weighting factors WE:lc, Wg's,
Wg, Wqc, er, Wv’ W’y, and Wh' Their values are essentially the
inverses squared of the acceptable tolerance or variance in each quan-

tity:
. 1
Wq_ = (4.2.16)
¢ 2
O'qc
Wg's = —1- (4.2.17)
) ;
O'g|s
Wq = i (4.2.18)
2
%
w2 (4.2.19)
qc 5 |
O'qc
-1 2
er __U__?_ (4.2.20)
x r
w =L \ (4.2.21)
v —2 s Qe



L = (4.2,22)
v

w, = L ‘ (4.2.23

h 5 TE +2.23)
%

However, any of these may be scaled by a multiplicative constant to
alter the relative weightings so that large tolerances are weighted less
heavily and small tolerances weighted more heavily, or they may even
be time dependent or varying with some other variable,
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4,3 The Reverse Differential Equations

The reverse differential equations to be integrated backwards
from the terminal time t. are as given by Eqs, (3,2,12) - (3,2,14):

- H-H[ £(0), T, It ] (4.3.1)
Ty = H I E-E] E, T, 1) (43.2)
~1
< T ) T, T T T
e L e L e L W L S WSS
(4.3.3)

where all terms are evaluated at Eg(t), wk (t), t7] unless otherwise
indicated, The left hand sides of Egs. (4.3.1) - (4.3.3) are the total
time derivatives of the variables of the backward integrations,

In otder to see how some of the terms on the right hand side ap-
pear in this particular problem, we write the Hamiltonian as defined in
Eq. (3.1.14):

HLx(t) u(t), 0 t_J Ll x(t), u(t), t_J+--__ frx(t) u(t), t_,

(4.3.4)

where L is given by Eq. (4.2.3) and f by Eq. (4.1.12), £ is obtained
by differentiating Eq. (4.1, 12) with respect to the state vector of Eq.
(4.1.10), while £, is the partial of f with respect to the control vector
of Eq. (4.1.11). "Explicit expressions are given in Appendix C,

From Eq. (4.3.4) we assume that I is the classical Lagrange
multiplier influence function of the cost funcfional with respect to vari-

ations in the state vector to render
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H§_= L?.‘.+(J2‘_“f‘)?£ (4.3.5)
or taking the J_ out of the differentiation,
,ch_= L§+J£_t;_ | (4.3.6)
Similarly
- T
Fxx (5 | s
- - T
“Lext Ik | %
-3 £
X XX,
JE 'f'_’_‘_V v
= Lxx + (4.3.7)
== J_ ,
X Xy
Tz Lxn

where the bracketted term is depicted as such in order to avoid third
order tensor notation, These quantities are further expounded in

Appendix C, In an analogous fashion, we may express

(4.3.8)

Hy = Ly*dp 4y
T Lug
Huu= Luu+ (4.3.9)
- - J f
x “ua

and
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— - T
Hyx = ('_HEJ x
T Lxg
= Lux + (4.3.10)
— J f
_)5 Xy

A detailed derivation of these is given in Appendix C,

The partials of the accrued cost functional L required in Egs,
(4.3.5) - (4.3.10) are given as follows. Recall the expression for L
in Eq. (4.2.2) and (4.2.3):

1 . - .2 2 ‘ 2 o 72
L=2’{ch(6qc) +Wg's(6g's) + Wq (6q)” + 2 ch( 6qc) }
“ (4.3.11)

Taking the desired partial derivatives we find that

™
-

0

g's’v
= 0 A ‘
5qc ch (6qc)h + 6g's Wg's (6g's)h + 6qu(6q)h v : qc(éqc )h

achqc(aqc)v+ag,SWg,s(a )y * 8aW_ (8q), +\VWaq_ ( 5a.)

L (4.3.12)
r
v

Lxx= L (4.3.13)
=2 Ty
Ly

|
i
™

c'v




L )
.
— La
— T
bgis Vg's 0gist
= (4,3.14)
‘Sg's g's(ﬁg's)a
L
L = ¢ " (4.3.15)
uu L . 3.
*Ju
Y .
LE£=(LLEJ )  (4.3.16)

These are stated explicitly in Appendix C along with expressions for.
the partials of the delta terms, 6§ (... ) and ’E(qc).

Terminal boundary conditions for the reverse differential Egs.
(4.3.1) - (4.3.3) are given by Egs. (3.2.15) - (3.2,17):

a(tf) =0 ' (4.3.17)
T ) = F [ Ep), 1 ] © (4.3.18)
JEE(tf) = Fyx [g(tf), tf] (4.3.19)

Recalling the form of the terminal cost functional in Eq. (4.2.5):

1
= 7
F 3 {6erxr6xr+6va6v+67 W,y 67+6h“h6h}

50 (4.3.20)



we take the desired partial derivatives required in Eqs. (4.3,18) -

(4.3.19): , T

™

and

T
Fxx [([Fzs] 'x

(4.3,21)

(4.3,22)

Further explication of these boundary conditions may be found in

Appendix C,
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CHAPTER V

COMPUTATIONAL PROCEDURE

5.1 The Main Algorithm

To solve an optimal control problem such as the non-linear
lifting -body atmospheric reentry one by the new differential dynamic
programming approach, an initial nominal control history u(t),
te Eto, ’cf ] >, must be available, either from a previous run or from
an estimation or initial guess. Integrating the state Eq. (4.1.12) for-

ward from the initial conditions at t,, and employing the nominal con-

trol history u(t), a nominal state h:?story is generated, x(t), along
with other desired quantities and the total cost, Since an initial esti-
~mate of the terminal time is also required in this formulation, it may
be updated at this point in the algorithm, In this way, it is not incor-
porated directly into the procedure, but left as a variable parameter
to be updated or changed depending on the needs and requirements of
the optimization procedure, If the terminal time is increased, the
state vector may be extended by maintaining the control vector of the
old terminal time constant between the old terminal time and the up-
~ dated terminal time. For a decrease in terminal time, a mere trun-

cation is all that is required, There is a me‘chod']_3

which incorporates
more directly the terminal time updating procedure, but entails in-
creasing the dimension of the problem, and thus increasing the compu-

tational burden as well,

The reverse differential Eqs. (4.3.1) - (4. 3. 3) are then in-
tegrated backwards from the boundary conditions of Eqs. (4.3.17) -
(4.3.19) to the initial time to-

process that the Hamiltonian is minimized in the control space to
63
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determine u* (t). The optimal and nominal cost difference is monitored
during the backward integration, and the time teff is recorded at which
a [ x(t), t ] differs significantly from zero, or in practice when

'a t g(t), t:” exceeds a small positive constant, 7. The variables of
the reverse integrations are also closely monitored, and the time tb is
recorded when the backward integration goes unstable and becomes un-
bounded, where in general, if t exists, tg <ty < toge < te

The new step size adjustment method then determines a new im-
proved nominal trajectory provided it exists and can be found according
to the control of Eq. (3.2.19):

u(t) = wk(t) + B ox(t) (5.1.1)

A time tl, t1 € Eto, teffj or 1:1 € [tb, teffj is chosen, where the old
nominal is employed for t € E to, tl | while an improved optimal is valid
over | t, t e t, is the earliest time at which the actual improvement
in the cost functional is sufficiently near the predicted cost improvement,
This is expounded in Eqs, (3.4.3) - (3.4.5). 1:1 is determined through
Egs., (3.4.6), (3.4.7) and (3.4.9).

If a new improved nominal trajectory cannot be found, the new
step size adjustment method stops the computational algorithm, If a
new nominal trajectory can be determined, the reverse differential Eqgs.
(4.3.1) - (4.3.3) are integrated backwards again, and the procedure
continues until either an optimal trajectory has been determined to some
specified tolerance, or until improvement in the nominal trajectory is
no longer attainable, The main algorithm is depicted in the flow diagram
of Fig, 5,1,1.,
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u (t)

g{_(to)

|

integrate forward

f=1
l % (t)
L a (t)
update tf J.’E.(tf)
‘ | + J&(tf)

integrate reverse
differential equations

minimize H with respect to u(t)
to obtain u  (t)

Note t = t_g when |a[§§(t), t]l >n

Note t = ty when reverse integration

becomes unstable

u (t)
x(t)

Y

step size adjustment method

updated
°(t)
updated u

x© (t) improved nominal
is unattainable

Y Y

computational halt

Figure 5.1.1 Main Algorithm
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5.2 The New Step Size Adjustment Method

To determine a new improved nominal trajectory, the step size
adjustment routine obtains from the main algorithm the time t eff 2t
which the magnitude of a [  x(t), t ] exceeds a small positive constant,
n. The optimal trajectory is specified when t off becomes less than or
equal to the initial time ty. Otherwise the constant ¢ of Eq. (3.4.5) is
initially set t0 0.5, A 1:1 is found according to either Eq. (3.4.7) or
(3.4.9) over the time interval [ ty teff] or f_'tb, togr "] » respectively,
such that an application of the nominal control, g(t), over ['_to, tl j
and of the new improved optimal control, u(t) = w* (t) + su(t), over
Efl, tf ] leads to a predicted cost improvement sufficiently near the
actual cost improvement according to Eq, (3.4.5). When this condition
is satisfied, control is transferred back to the main algorithm which
proceeds with the next step, Otherwise tl is tested to see if it is be-

0 and-teff. If it is, tl is updated through Eqs. (3.4.7) or (3.4,9)
and the nearness criteria of Eq. (3.4.5) is tested again, If tl is not

tween t

inside the interval [ tys et ], cis set to zero and t, is again sought
over [to, toge ] or [ t,. tpp ] to satisfy Eq. (3.4.5). If ¢ is already
zero, the step size adjustment method halts the computation, as no
further improvement of the nominal trajectory can be obtained.

It is to be noted that t 1 is actually tested for inclusion in the in-
terval Eto, teff - dt 7|, where dt is the length of a time step, rather
than in the interval E to, teff ] . This is to preclude tl from ever being
. updated into the interval [_ topp tp | over which intervalla [_ x(t), t 7}
<€ 7m and optimality is satisfied, as described in Section 3,4, Figure 5,2.1
exhibits a flow diagram of such a new step size adjustment method.
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from main algorithm

Yes halt;

optimal determined

to,0 7 " tesr , |
t, =t = L @ .+t )
1 0,r+1 9 eff O,r

employ u(t) = u(t) for te [LO, t,]
employ u(t) - u™* () + du(t) for te [t , t;]

'

AT = FR@), 4] - g7 [Zep, t,]

Yes \:1“)

updated
i x(t)

updated

proceed with
main algorithm

halt; no improvement
- in nominal obtainable

Figure 5.2.1 Step-size Adjustment Method
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5.3 A Computational Device for Determining w* (t )J'~2

The new control to be applied is stated from Eq. (3.2.19):

u(t) = wk(t)+ B(t) 6x(t) (5.3.1)

In non-linear examples, it may be plausible for the second term on the
right hand side of Eq. (5.3.1) to be large enough to invalidate the local
expansion in the control variables, However, 6x(t) alone may still be
sufficiently small such that the following expansion remains justified:;

I, l:gz__(t)., 53 (1), tJ - 3, [g(t), t:l . [g(t ), t] ag(t)

(5.3.2)

This being the case, another method may be utilized for purposes
of determining the new optimal control u(t). Rather than seeking the
desired su(t) referenced about u*(t), u(t) can be gotten directly by
minimizing:

[ 26 +ox(t), u(), I, B3 t] T [ E ] sx(n), t:l

with respect to u(t) either analytically or numerically. Such a technique
would also increase the radius of convergence of the algorithm.

In a similar fashion, u* (t) can be determined by setting 6_)5(1:)
equal to zero, This would occur during the backward integration of the
reverse differential equations.
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CHAPTER VI

RESULTS

6.1 On The Formulation of the Algorithm

The reverse differential equations for J <% require a nonsingular
H, , matrix. For the instances when it does become singular, it may
be replaced by some predetermined matrix, A truer alternative is uti-
lized in the algorithm of this thesis, especially prevalent in the cases |
where a constant angle of attack is maintained, During the time steps
where Huu does become singular, the control vector consisting of roll
angle, ¢, and angle of attack, a, is reduced to a scalar control variable,
¢. The Huu matrix is accordingly replaced by the ¢—»component, H(ﬁ‘b"
or in other words, by the (1, 1) component of the original Huu matrix,
Effectively, the influence of & on the Hamiltonian is ignored during this
time interval, and only the effect of ¢ is retained, much more represen-
tative than replacing the)whole matrix by a predetermined value, It is
only when H, , vanishes that a value is substituted for H, ,, as opposed to
four constant yalues for the Huu matrix. A previous value of H 6 is
tried first, provided it is non-zero, Only if this is zero is a predeter-
‘mined scalar value for H,, utilized. For these cases, the dimensions

of H ,and iu are also changed accordingly.

The range values for ¢ and & are bounded, and although an algor-
ithm does exist for control inequality constrained optimization problemsJ_2,
a more convenient formulation circumvents the additional computational
burdens which it entails, As the data is introduced in the form of a finite
data point table, the values assumed outside of the range of interest of
the given table are irrelevant and may take on any value, If we hypothe-

size that ''no significant benefits in cost' can be accrued outside of this
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range of interest, then by testing and sampling in this region only, we
are effectively sampling the entire control space, and thus essentially
have a simpler unconstrained control formulation, Herein lies an ad-
vantage of not having the data as empirical functions of the control
variables, and the obvious savings in the dimensionality of the formula-
tion and computation time manifests itself, Another way of viewing this
is to realize that only the controls in this region of interest are desirable
or acceptable. To ensure that the controls do fall into this specific range
of values, large penalties may be imposed on excursions outside of this
region. A much simpler approach excludes the undesirable control space
from ever being sampled at all, for it would incur such heavy penalties
as to be rejected anyway. This ""foreknowledge' leads to considerable
savings in time during the search of the control space.

The lift and drag coefficient data are functions of both Mach number
‘and angle of attack. The two-dimensional search for these aerodynamic
coefficients and their first and second derivatives was first attempted
using linear interpolation in each of two directions, and secondly by means
of independent four-point binomial local fit along each dimension. When
both were found to be inadequate, due to the accuracy requirements for
the first and second derivatives with respect to both Mach number and
angle of attack, plus a cross derivative, a Newton third order fit was
utilized and found to be satisfactory. Since the study was primarily an
initial analysis of the c.g, trajectory, functional dependence of CL and
.CD on only angle of attack (and a hypersonic Mach number) is deemed
acceptable, This is because the aerodynamic characteristics remain
fairly constant until the lower Mach numbers are attained, At these lower
Mach numbers, however, the changes in these aerodynamic coefficients
are incapable. of altering the reentry trajectory to any great extent, thus
validating the engineering assumption for such an initial trajectory analy-
sis, For qualitative comparisons with the Apollo reentries, a trim angle
of attack of 60° may be maintained throughout the entire entry, resulting
in a constant L/D value of 0,521, In this simplified case, C, and C

L D
are simply constant values selected from the data table,
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The basic formulation is for a continuous system, and as a
digital computer requires a discrete sampled version of the continuous
histories of the variables, there arise problems of interpolation of values
and synchronization of values held constant over finite time intervals,
This is further complicated by the fact that the Runge-Kutta integration
routine contains four steps of unequal duration within the overall integ-
ration time step. The most feasible interpolation and synchronization-
procedure was found to be the following, At every full time step, store
the sampled state variables from the forward integration of the state
equations, These were retrieved at the beginning of each reverse inter-
gration step, and held constant throughout'the entire step time, Within
the reverse integration step, new controls u* were determined utilizing
current values of the reverse variables of integration. On the forward
integration to determine the new updated nominal control, the values for
the reverse variables of integration were retrieved at the start of each
full forward integration step and held constant for the remainder of that
time step, Within the individual forward integration steps, current
values of the states were employed to update the control. In both cases,
truer representations of the actual control were rendered, leading to
more accurate representations of the sensitive reverse variables of in- ~
tegration. The interpolation and synchronization scheme is contained

in the main program of the optimization procedure listed in Appendix F,
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6.2 Numerical Results

The differential dynamic programming formulation for optimiz-
ing atmospheric reentry trajectories was programmed in the pseudo-
language MAC for implementation on the IBM 360/75J, In MAC, all
values used in computation are stored as double-precision flbating—point
numbers occupying double words of eight byte or sixty~-four bit length. -
This is equivalent to an accuracy of 15,9 - 16,8 decimal digits, or in
decimal notation, the range of a double-precision floating-point number

lies between 108 ana 1076.

An introductory description of MAC ap-
pears in Appendix E, Listings and explanations of the programs and

subroutines employed by the optimization routine appear in Appendix F.

Due to the existence of the nonlinear term in the matrix Riccati
reverse differential Eq. (4. 3. 3), instability during the backward integ-

ration is defined as when the magnitude of any component of J, < exceeds

1035. Any Jxx component exceeding an absolute value of 1035Y'

1035 with the appropriate sign, in order to prevent an overflow abort

is set to

and to allow the proper completion of the integration for that time step.
The same magnitude bound on the components of Huu is also implemen-
ted, even though magnitude violations in the absolufé values of the

- components of Huu do not directly cause an instability in the manner de-
fined above for tHé'JXX components,

The atmospheric reentry trajectories were integrated forward
from the following set of initial conditions:

x.(tg) = On.m. (6.2.1)
v(t,) = 26,000 fps (6.2.2)
y(ty) = -1.5deg. (6.2.3)
h(t,) = 400,000 it. .(6.2,_4)
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An exponentially varying atmospheric density model was utilized, with
a scale height, hS, of 28,500 ft, The speeds of sound and its variations
with altitude were extracted from the 1962 U,S, Standard AtmosphereU’l.
Full integration time steps were of 1 second duration, both in the forward
and reverse directions, Ordinarily the forward integration of the state
equations does not réquire such a small time step. However the need

of the very sensitive reverse integrations'to employ state variable values
of better accuracy than perhaps interpolated values deemed it more
feasible to use the same step size in both directions. Computation time
and core memory allocations constituted the major obstacles preventing

a desirable further decrease in the size of the reverse integration step.
This is with respect to a total time interval of interest on the order of
hundreds of seconds. In addition, as control constaints had not yet been
included, the angle of attack, «, was constrained to a 60° value for all
Mach numbers above 5. Since this was most desirable from an aero-
dynamical stability and control point of view, penalizing deviations from
a 60° angle of attack above Mach 5 was disregarded in favor of such a
simpler fixed constraint approach, In each of the following cases, the
total acceleration and dynamic pressure profiles were penalized, The
threshold values at which penalization occurs were both zero. Deviations
from the desired terminal states were also penalized according to the

various weighting schemes given,

The first case is shown in Figs, 6.2, la - ‘6. 2.1h, and assumes
zero weightings excepting the following:

Ogig = 0.5 (6.2.5)
or | Wg's = 4 (6.2.6)
c. =1 (6.2.7)
Xr
or w = 1 (6.2.8)
Xr



6000+

5000+

4000%

300071

20007

—— -  ACCRUED COST J1L

10004

TERMINAL COST F

6000+

5000+t

4000+

3000t

20001

1000

TOTAL COST ¥

6000+

5000+

PGO05G
er =1
Wé|s = 4
2700 n. m.
7= 2,0

4000- ff +-20

X / ,

N
N
AN
3000+ N\ +-40
,—-\<'O Il
\\ \o.\
\
A\
2000+ A + .60
\
\
\
\
g \

1000+ \ +4-80

m/ \

\
%
_—— e |
% 1 2 3 4

ITERATION NUMBER

Figure 6.2.12a
74

— e TERMINAL MISS { n.m.}



teff (sec)

- 400+

1000 —+-

- 800+

600+

ITERATION NUMBER

Figure 6. 2.1b

75

1000

- 800

- 600

-400

- 200

t, (sec)



21°g 9 2an31g

e

4

Fl
T

0001 006 008 00Z 009 O00S O0O+b

(03S) 3WIL

00t

00¢

(930) AOVLiiVv 40 3JTONV VWILJ0 -
(930) XOVilV 4O 3TONV TIVNIDIHO .

01

Oc4

Om 4

Ob+

. Oml

09-

T

-+

76



P1°g 9 2andtg

" 0001 006 008 -00Z 009 00S 00+ OOf 002 00l O !
(035) IWIL
2 o+
: oc+
: 09+
: 064
: oz1+4
os14
(930) ITONV TI0Y WWILDO -
(930) ITONV 1I0Y TIVNIDINO -
4

77



21°g "9 2andig

="

(03S) 3WIL

N

+21'0-=(% e | g

0 "1

5°¢

AYOLSIH _<_ |

=%

E
-
-

1
+
+
-+

78



1129 @and1g

" 4

-

L

0001 006 008 00Z 009 00S OO0k 00§ 002 OOl
, , (235) IWIL

cg1:=59 XV

(S,9) 3M40¥d NOILVY3T300V "WVWILJO - -
(S.D) 3T1J0Yd NOILYYH31320V TVNIORHO .

0

S

0 "¢

S°¢

-

-

T
+

79



4
¥

00t

81°g'9 aandig
" 0001 006 008 00Z 003 O00S OO+
(03S) IWIL
Bl VY - e
PH9 =D XV W

(4Sd) 3UNSS3Hd DJIWVNAQ TIVWILLO -
(4Sd) 3UNSSIHd DIWVNAG TIVNIOIHO .

-

T

-

-

001+
00¢+
OOm,L
004
005 -
009+
00/¢ 1

008

L

T

-

-~

+
+

s
T

e
T

3
T

80



41°g'9 oandtg

. 0001 006 008 00Z 009 O00S OO+ OOE 002z 00T O . L

T (335) 3L
109- 0-
+05- ......:. 14
+0+ ) . : 2
{ot- £
+
mL
e ————————— 94
K._

| (AIG- L4 000°0S) 3IANLILTTY  +
Loz(3¥DS 18930 ITONV HIVd LHOM4 - g4

(AIGrSd4 000°S) ALIDOTI3A 3AILVI3Y

x

(AIO7WN 00%) FONVY HLMV3 o

+

-+

b
T
T

-+

-+

T

-+

T

81



tf = 1100 sec. (6.2,9)

n =2.0 (6.2.10)

with a desired down-range of 2700 n.m. Fig, 6.2, la indicates the de-
crease in cost with every iteration, It also gives a down-range terminal
miss error history with iteration number, Figure 6,2, 1h shows the
variations of both teff and tb with iteration number, Note that the insta-
bility of the reverse differential matrix Riccati Eq. (4.3, 3) occuring on
the initial iteration att = 212 sec, is eliminated in the iterations there- |
acter, Figures 6.2, 1c and 6.2, 1d depict the control histories for angle
of attack and roll angle, respectively., The initial nominal and the final
optimal control histories are shown for both control variables, Figure
“6.2. 1e shows the magnitude of the "'a" history on the last optimizing
iteration, when its absolute value never exceeds 7 on any portion of the
time interval of interest, On preceeding iterations, tots is determined

by the time at which |a| first exceeds 7, and on subsequent iterations,
more and more of the |a | history falls below the |a| = nn value, For the
continuous case, |a| should identically vanish, for it is a measure of how
close the nominal control is to the optimal control, as indicated in Eq,
(4,.3.1). However, where finite size time steps are employed, a non-
zero tolerance value of nis utilized, The values of 7 employed in these
_cases are rather large, due to the long time step durations and the lengthy
overall time interval of interest, In this first case, the final |a|history
falls well below the 7 value, Figures 6,2,1f - 6,2, 1g depict initial and
final optimal acceleration and dynamic pressure histories. Here dynamic
pressure increased markedly and is essentially irrelevant to the first
case, for Wq = 0, Note the decrease in g's after t = 820 sec., for all
accelerations above zero were penalized, The kinks or jumps in the ac-
celeration profiles are due to the finite jumps in the angle of attack history,

Optimal state variable histories are finally shown in Fig, 6.2, 1h,
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In an effort to eliminate the instability point, the time interval
of interest was shortened, leading to a new set of initial conditions:

x,(ty)) = 1699.4 n.m, _ (6.2.11)
v(to) = 20,736713 fps (6.2.12)
'y(to).‘: -1,11203 deg. | © (6.2.13)
h(ty) = 300,061.4 ft, (6.2.14)

tf = 657 sec. (6.2.15)

These values were extracted from an open 1obp trajectory wiih the ori-
ginal initial conditions of Eqgs. (6.2.1) - (6.2,4), and maintaining
constant control histories of ¢ = 0° and o = 60° down to about 300, 000 ft,
in altitude, thus producing an essentially ""equivalent' set of initial
boundary conditions, The following two cases show the effectiveness of
shortening the total time interval of interest,

Figures 6.2.2a - 6.2, 2h present a case identical to the first ex-
cept for the following differences:

o, = 100 ’ (6.2.16)

q

or Wq = .0001 (6.2,17)
Wyig = 0 (6.2.18)
n =2.5 (6.2.19)

The new initial conditions for the shortened trajectory are employed.
Now dynamic pressure is penalized, while the acceleration history is

essentially ignored, Figure 6,2, 2a shows again the decrease in cost
' : 83
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with every iteration, while Fig, 6,2,2b evidences the complete elimin-
ation of an instability point, and thus tb = 0 at every iteration, Figure
6.2.2c and 6, 2. 2d indicate the initial nominal and final optimal control
histories, andFig. 6.2, 2e giVes the |al variation with time. In Fig,
6.2.2f, larger accelerations for longer periods of time are allowed than
in Fig. 6. 2, 1f, since the gravity profile is now given zero weighting,
Comparing Fig. 6,2.2g with 6.2, 1g, a cost improvement in dynamic
pressure is observed, as was intended by the inclusion of the weighting
factor, Wq, for this particular case, The undesirable increase in dy-
namic pressure of the initial nominal history as compared with the final
optimal history, and hence an increase in the dynamic pressure cost
term, is more than offset by the cost improvement in attainment of the
terminal desired down range, which was more heavily weighted in Eq,
(6.2.8). This terminal miss distance in down-range is given in Flg
6.2.2a as a function of iteration number,” Thus, the importance of the
relative ratios of the v}eightings is brought out, and the consequences of
a soft constraint quadratic penalty cost approach are made known,

The decrease in total cost at every iteration is the determining factor in
the optimization procedure, and the relative importances of the various
penalties are reflected by the magnitude and more importantly by the
ratios of the various weighting factors, The optimal state histories are
displayed in Fig. 6.2, 2h,

The following weighting ratios lead to the results depicted in
Figs, 6.2,.3a - 6.2, 3h:

W =0 (6.2.20)
x .
Ir
Wg,s ='4 (6.2.21)
WV = ,0001 ' (6.2.22)
W = .01 (6.2,23)
Y
W, = .000001 (6.2.24)
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-

The desired terminal state values are a velocity between 100 and 1000
fps, a flight path angle between ~10 and 10 deg,, and an altitude between
10,000 and 70,000 ft, These soft constraints are much less heavily
weighted than the acceleration., Figure 6,2, 3a indicates the decrease in
total cost at every iteration step, The overall decrease in terminal cost
is also indicated, but is much smaller than the decreases in the accrued
cost for the acceleration profile, Figure 6.2.3b shows the successful
elimination of the instability point in the reverse differential matrix
Riccati equation, Figure 6.2, 3c and 6,2, 3d present the initial nominal
and final optimal control histories, and Fig. 6.2.3e the |a | variation
with time. . Figures 6.2, 3f and 6, 2; 3g reveal the acceleration and dynamic
pressure profiles with the former penalized and the latter essentially
ignored. Final optimal state histories are exhibited in Fig. 6.2, 3h.

The fourth case is the same as the third with the following changes:

o =1 (6,2,25)
or

W, =1 (6.2.26)

and with the lowering of the desired terminal velocity upper bound from
1000 fps to 900 fps. The results are described in Figs, 6.2.4a - 6.2, 4h,
The purpose of this case was to lessen the importance of the acceleration
penalty such that the desired terminal constraints assumed a larger rela-
‘tive weighting than previously. From a comparison of Figs. 6.2, 3a and
6.2, 4a, the terminal cost term at the final iteration step has been reduced
from 14 to 6, due to improvements in lessening the terminal deviation in
velocity and flight path angle, The terminal altitude was satisfactory in
both casés. However, these terminal state weightings are still small as
compared to the weighting for the acceleration profile, and subsequently,
not all of the terminal soft constraints were attained.

The fifth case is the same as the previous, excepting the following:
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W ,.=20 (6.2,27) .
W_ = ,0001 (6.2.28)

" Also, the terminal time was extended from 657 sec to 757 sec. This is
equivalent to a 1200 sec, trajectory from an initial altitude of 400, 000 ft.
Figures 6.2,5a - 6.2,5h depict these results, From Fig, 6.2, 5a, the

- terminal cost is now reduced to 2, with the only terminal violation being
in the flight path angle, but now with a still smaller deviation from the
desired values than in the previous two cases. Figures 6,2, 5f and 6.2, 5g
show the acceleration and dynémic pressure profiles, respectively, where
the former is essentially ignored while the latter is penalized. In this
case, the optimal dynamic pressure history has been cost wise reduced
to where it has a maximum peak of only 91 lbs/ ftz, This is to be com-
pared with the dynamic pressure contours of Figs. 6.2.3g and 6,2, 4g.
Figure 6. 2, 5h reveals the optimal state variable histories, '

The sixth case differs from the previous in the following:

Wg.s = .25 (6.2.2_9)
W, =0 (6.2.30)
m =20 | (6.2,.31)
t. = 657 (6.2.32)

It is essentially equivalent to the third and fourth cases, but stressing
the accrued penalty term on the acceleration profile still less, In addi-
tion, 11 has been reduced to 2. O’. Figures 6,2,6a - 6,2, 6h display the
results. In Figure 6.2, 6a, the terminal cost is shown to be reduced to
0.5, as compared with 14 and 6 in Figs. 6.2.3aand 6.2, 4a, respectively,
Barring the significance of a slight 6 fps terminal velocity violation, the

only significant deviation is in the terminal flight path angle, now smaller
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than the terminal flight path angle deviations of the previous three cases,
Thus, with an even smaller weighting on the accrﬁed cost term than in
the fourth case, the relative importance of the terminal performance is
further accentuated., In addition, the shortened time interval has also
-served to eliminate instabilities in the matrix Riccati equations as evi-
denced by Fig, 6.2,6b.

A case penalizing both the acceleration profile and the dynamic
pressure history is given in Figs, 6.2, 7a - 6.2, Th, with the followmg
changes from the previous situation:

Wyig = 1 (6.2.33)
W, = .0001 (6.2,34)
n =25 " (6.2.35)

With the same terminal state tolerance weightings as in the previous four
cases, it is clear that terminal violations are less important than reduc-
tions in acceleration and dynamic pressure than in either of the fourth,
fifth, or sixth cases where the terminal costs were 6, 2, and 0.5, re-
spectively. Here the final terminal cost is 9 at the seventh iteration as
indicated in Fig, 6,.2.7a. The shortened time interval did not eliminate
the instability in the Riccati equation which appears on the first iteration
att = 313 sec.. as evidenced in Fig. 6,2,.7b. However, the instability
does not appear again in the subsequent iterations., Figures 6.2,7f -
6.2. 7g reveal the max1mum acceleration to be 1,82 g's and a dynamlc
pressure peak of 78 1b/ ft both quite reasonable and due to the welghtlngs
given them in Eqgs., (6.2.33) and (6.2.34). Here, terminal state accur-
acy has been sacrificed in favor of acceptability in both the acceleration
and dynamic pressure profiles, The optimal state histories are finally
shown in Fig, 6.2, Th,
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In the fourth, fifth, and seventh cases, the shortened fime inter-
val did not totally eliminate the instability points, Upon further detailed
examination of the non-linear systeni, along with the formulation and its
corresponding new linear system based on converting the reverse differ-
ential Eq. (4.3.3) into the form of the non-linear matrix Riccati equation,
the controllability and observability in the deterministic sense of the
formulétion were questioned. The formulation was found to be both con-
trollable and deterministically observable, thus revert;ing the cause of
the existence of the instabilities to probably the propagation of numerical
errors in the computations for integrating the very sensitive reverse-
differential equations, This coupled with the fact that practical con-
straints precluded the utilization of a desirably smaller reverse integra-
tion time step is adequéte cause for the sometimes diverging behavior
exhibited by some of the reverse variables of integration. The shortened
total time interval served only to lessen the frequency of such occuren-
ces, but was incapable of completely alleviating the problem. Another
tact of rescaling the values of the state variables only served to worsen
the situétion. The determination of the controllability and observability
of the system formulation is fully contained in Appendix D, N
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CHAPTER VI

CONCLUSIONS

7.1 Summary

‘ A new second order ap;;roach for determining and optimizing
nominal trajectories for the reentry phase of the Space Transportation
System utilizing the notion of differential dynamic programming has been
formulated, A globally positive definite inverse second partial deriva-
tive matrix, Hu o’ is no longer required, The problem of an unbounded
Riccati equation is circumvented to a certain extent by the advent of a
-new- step size adjustment method to within the numerical accuracy of the
computations involved in the reverse integration of the matrix Riccati
equation. Rapid convergence of the non-linear problem is retarded only
by the numerical inaccuracies of the computations,

A new approach to confronting the problem of a singg]lar Huu
matrix in the reverse differential equation, where [ H, ,] is required,
is introduced, It affords a truer representation by reducing the dimen-
sion of the control vector so that Huu becomes a scalar, namely its (1, 1)
" component; and substituting this one value rather than predetermined
values for the entire matrix, Essentially, the effect of the temporarily
discarded control variable on the Hamilton is ignored. In addition, an
essentially control constrained problem has been converted into an un-
constrained control‘problem through use of a finite point data table, By
concluding that no additional benefits in cost can be gained outside of a
certain control range of interest, a search within that range constitutes
a search over the entire control space with respect to the overall cost
functional or performance index,
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Cases were run employing the general conditions and character-
istics expected for the reentry of the STS., The major problems encount-
ered appeared to originate from the numerical inaccuracies propagated
through the integrations, and from the finite representation of a contin-
uous system by sampled data at one second intervals, The lengthiness
of the overall time interval of interest served to intensify the aggravating
problem of numerical integration inaccuracy, especially for the very
sensitive reverse differential equations, The desirability of decreasing
the reverse infegration time step duration was mainly precluded by the
already overburdened requirements on computation time and computer
core memory allocation, For well defined optimal control problems,
optiinum trajectories were established and their corresponding proper
control histories and influence functions were generated.
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7.2 Conclusions

The novel approach of applying the notion of differential dynamic
programming to determining and optimizing atmospheric reentry tra-
jectories is impressed. With a prudent choice of weighting factors and
a reasonable initial estimate of the control histories, optimal solutions
may be generated, Within a local convex region of the Hamiltonian in -
the control space, a magnitude of the ""a" variable less than a tolerance,
7, for all times of interest signifies that the local optimal solution has
been determined, The validity of these optimal trajectories is dependent -
upon the accuracy of the aerodynamic model as reflected in the numerical
values for the lift and drag coefficients, and the exactness with which
they and their derivatives are extracted from a finite aerodynamic data

point collection,

Each forward integratiori searching for a feasible value for t; to
determine a new optimized interval of time is essentially an open loop
simulation or forward integration of the state equations, closed by the
"nearness criterion' of the actual cost improvement derived from each
forward integration as compared with the predicted cost improvement.
Here, man is eliminated from the closed loop optimization analysis, and
the flaws and disadvantages of a simple acceptance and rejection criterion
in the '""nearness' test are made imminent. The overall efficiency and
effectiveness of finding an appropriate optimized interval are impaired.
A perhaps more complicated "nearness criterion" is required, possibly
with "c" becoming smaller as the optimal solution is closer approached
éo that in the end, any improvement in cost is accepted. A final value
for "c¢" of zero is an indication of the numerical inaccuracies that must
be tolerated as the performance index improvements become smaller
and smaller, A routine for judging the acceptability of the nearness of
lalto "c'" must not, however judicious it might appear, hamper the
timewise efficiency of the overall optimizing process. Obviously, a
less complicated and demanding criterion should be employed during the
initial iterations.
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Inclusion of eight different performance criteria with a weight-
ing pattern for penalization renders a very flexible algorithm for
determining optimal trajectories for a diversity of situations. However,
care must be taken in selecting an appropriate set of weighting factors.
It is due to the number and variety of parameters involved that a soft-
constraint quadratic penalty cost functional was adopted. A system may
become over-constrained so that no solution exists that will satisfy all
the desired conditions, A soft constraint approach merely allows the
system an additional freedom to violate the least important cost wise
constraints, so as not to impede the proper determination of an optimai
solution. |
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7.3 Significance

Such an approach has been to afford a closed loop methodology
in optimal nominal atmospheric reentry trajectory determination, Open
loop guesswork is now eliminated in favor of a consistent framework
from which to generate and examine control strategies, The variables
of the reverse integrations are the influence functions employed as the-
gains in the closed loop perturbation guidance control law, Whereas in
the Apollo reentry logic the gains were generated from a first order
adjoint method, the gains for the STS reeniry are generated from a
second order differential dynamic programming procedure and based on
an optimal nominal trajectory. " This importance is accentuated by the
inclusion of a pitch down transition to cruise maneuver which may render
highly sensitive influence functions which in furn might require highér
order or cross coupled terms in the closed loop control law,
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7.4 Recommendations

A useful contribution to the overall effectiveness of such a dif -
ferential dynamic programming approach would be to determine a
synchronization and interpolation procedure to facilitate lessening the
inaccuracies encountered in the integrations of the reverse differential
equations, This tact would be more feasible from a pragmatic point of
view than merely decreasing the duration of the reverse integration time
step,

Another very useful contribution would be to effect a more pliable
and reliable ''nearness test' for the acceptance and rejection of possible
| ti_mes for 1:1. A very effective criteria would aid in reducing the compu- .
tation time required to determine an appropriate t1 on each iteration as
well as possibly decreasing the total number of iterations required by
accepting as much cost improvement per step as is feasibly possible.

In addition, the determination of the proper tl in the later iterations di-
rectly affects how close and how quickly the optimal solution may be at-
tained.

A third useful addition would be the incorporation of a procedure

to vary the terminal time, Although an extended algorithm does exist to

J-3
d

this en , the added dimensionality of the formulation would entail much

more burdensome computations,

The ideas of Stengels__l, may be used tokpenalize destabilizing
values of angle of attack during the transonic transition maneuvers., To
obtain better accuracy during the later iterations, the weighting factors
may be increased with iteration number, Another alternative currently

A

classical boundary value iteration technique is utilized after differential

being investigated by Pu' is a hybrid formulation, where a more accurate

dynamic programming no longer yields an improvement in cost.

TMember of the Apollo Space Guidance Analysis Division, MIT Draper
Laboratory.
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In addition, operational considerations and control constraints,
may be introduced into the optimization process, perhaps to render a
control logic least sensitive and prone to errors emanating from bad
information; Lastly, improved methods are desirable in the extracting
of aerodynamic coefficients and their derivatives from three dimensional
finite data point tables,

143






APPENDIX A

AUSEFUL FORM QF THE HAMILTON-JACOBI-BELLMAN
PARTIAL DIFFERENTIAL EQUATION

We write the Hamilton-Jacobi-Bellman partial differential
equation (3.1.22) in terms of the nominal trajectory according to
equations (3.1.17) - (3.1.18):

{LIz®) + 6x(t), T(t) + u(b), 1]

3J° : - min
-5 @ F0xM), B = gy,

+ 2J° (X(t) + 6x(t), t) f [X(t) + 6x(t), T(t) + du(t) 't]} (A.1)
g}'{"" = i ) Joall S LAV, 4 AL, °

Equation (A.1) is exact, as no approximations have been introduced
yet. If the performance index is sufficiently smooth to permit a power
series expansion in 6x(t) about fx_(t), there follows::

IO ®t) + 8x(t), t) = JI° (F(t), 1) +

3% ]6§(t) + 1/2 6x(t) T J.".x] 5x(t)

i XX
x(t) =(t)
+ higher order terms (A.2)

If we rewrite the optimal cost according to equation (3.1, 23) as

P&, v = TE), ) + a® &), 1)  (A.3)
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where the controls are specified by equations (3.1.24) - (3.1. 25),
equation (A. 2) becomes

I° (%) + 6x(t) = T @), t) +a° (R(¥), t)

+ J;:j] ox(t) + 1/2 6x)T 52 5x(t)
()

- — Jdz)
+ higher order terms

Equation (A. 4) transforms equation (A.1) into:

3 _ 3 [0 o_15° |
-sF " {a (x(t), t)} al-r [J_X_]E(t)ﬁé(t)

-1/2 6?_c_(t)T %[J;f]i(t)ﬁi(t) + higher order terms

min ‘
- (L (=) + 6x(t), T(H) + duct), ]
Su(t) ~ -

+ ('J; ]

+J° ] 6x(t) + higher order terms)
- XX doppy —
x(t) = "E1)

£IR(E) + 8x(t), W(t) + bu(t), ]}

Confining the new perturbed trajectory to the neighborhood of the
nominal trajectory ensures a small enough 6x(t) so that higher
order terms in 8x(t) may be neglected. A sufficiently small

’ 63(1:) further implies that a quadratic expansion is an adequate
representation of the optimal performance index in the
neighborhood of the nominal trajectory. Utilizing these
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hypotheses, equation (A.5) is reexpressed thusly
3T _ D - _ 3 B
A2 fagm, v}-2 [, JE 5x(t)

-1/2 Gx(t)T 3 [JXXJ 5x(t)
X(t) '
i~ min

u(t) {.L [X(t) + 6x(t), T(t) + ult), t]

+ (sz_f(t) +y ]_}_{_(t)s;(t)) IR + 6x(t), WE) + but) 1}

(A.6)
This is the form of equation (3.1, 26). Note that the superscript o
has been dropped for the reasons noted at the end of Section 3.1
“Additional relations are given for the sake of completeness
3T _ 3 =
J (Z(t) + 6x(t), t) = T (E(t), 1)

+a @, 03] ezt +1/2 ex)T 5, ) X (A.8)
x(t) x(t)

JE (FIt) + 6x(t), t) = J?S (), t) + JE’_‘. (Z(t), t) 8x(t) (A.9)

where J - = J (X(t), t) and J
Ejz(t) ]“

J (X)), t).
= = x(t) XX =
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APPENDIX B

AN ANALYTICAL DERIVATION OF THE FORM OF THE
REVERSE DIFFERENTIAL EQUATIONS

We take equation (3.1. 26) or equival_ently equation (A, 6):
- R | T 3
M .2la@w, v} -2 |1 sx(t) - 2 sx)T 2 [ 1 6x(t)

~ min -~ —) ?
= But) {L 1z + 6x(t), TH) + buct), 1] + (JE ]-*u:) —]_(t)ﬁx(t))

£ [R(t) + bx(), W(t) + du(t), tI} | " (B.1)
Setting 6x(t) = 0, the right hand side of equation (B. 1) becomes:

lgllli(lflt) {L [X(t), T(t) + bult), t] +J ]_ £ [x(t), ut) + dult), t]}

=TT (B.2)
Minimizing the expression of equation (B, 2) according to the control
of equation (3. 2.1) gives
L[E®), u'm, 1 +3, | L[E), '), 1 (B.3)

—X()

Now reintroduce variations 6x(t) about X(t). In order to maintain
minimality o the right hand side of equation (B 1), we must also

reintroduce 6u(t), but now referenced about u “(t) according to equation
(3.2.5):
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- 2. 53—{ @), t)} [J ]_ px) - 3 bxtt) at[Jxx]_maxm

6 (t) fH (_(t) + 5x(t), u (t) +6u(t), J. ]’(t) ‘]__(t)ax(t) t)} (B.4)

and utilizing the deﬁnition of the Hamiltonian as given by equation
(3.1.14). This is equatidn (3.2.2). Expansion of the right hand side
of equation (B. 4) about X(t) and _u_*(t) according to equations (3. 2. 4)
and (3.2.5) leads to

min T

a1 {m+m u 0u®) + Hy (1) +[J | f] bx(t)

+ouw)” (8 +1 T >5x(t) +5 suit) T Hy Ut

+21- 6_}_{_(1:)'1' (HEES + if‘_T JZ‘_E § ) 6x(t) + higher. order terms} (B.5)

where all quantities are evaluated at [X(t), E:':(t), t]. We desire an
optimal linear feedback controller of the form stated in equation (3. 2.6):

bu(t) = B(t)8x(t) (B.6)

where B(t) is selected to maintain the minimality of equation (B.5)
To this end, we differentiate equation (B, 5) with respect to du(t):

H‘_}. B(t) 6x(t) + (H _ +-£uT J§£> 6x(t) + higher order terms =0 (B.7)

with all terms evaluated at [X(t), 11_*(1:), t]. This vanished because a
properly chosen B(t) maintains the necessary condition of optimality
as mentioned before. Since equation (3.2.3) states that H =0, and
if 6x(t) is sufficiently small, the coefficient of the first order term in
6x(t) of equation (B. 7) may be equated to zero to yield the expression
for the optimal linear feedback controller as given by equation (3. 2. 8):
-1
Bit) = - HEE] (HB.E J‘:‘SE) (B.8)
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Here again all terms are evaluated at [g(t), y_a‘(t), t]. If equation (B.6)
is substituted into equation (B.5), and we retain only those terms up

to second order in §x(t), we obtain:

| | T
H+ (B +3 _£+807 H ) 6xit)

1, T T e anT
+3 0x(t) (H£X+f J__+J £ - B

—X XX XX-X Hy_ u B(t)) 6x(t) (B.9)

Equation (B. 9) is merely the right hand side of equation (B. 4),
allowing us to equate the coefficients of like powers of §x(t) to obtain
equations (3.2.9) - (3.2,11): '

-3 _2da _ B
ST TS H (B.10)
3 _ | |
"3t (Jx> = H +J f . (B.11)

.2 ) . H°
o (Jz_ Hyp *1x To  Tex Ty

(g rz T )T [ I (g 2,7 04) | (B-12)

—

where all terms are evaluated at [X(t), u*(t), tl. 3, a, Jx, and Jxx

— i

are functions of the nominal trajectory, permitting the following full

differential expressions:
2{Taw, v+a@, 0} = & {Taw, v+a@w, v}

+J (&), 1) £ &(t), T, t) (B.13)
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d _ 3 . . -
& {5, @, )= 2 {JE &), )} + I, @O, DIED, 0, 0 (B.19)

d {+ = 3 - ‘
-3 {stz @&w, v } =2 {1 &, v} | (B.15)

o

for sufficiently small 6x(t). We also note that
-2 {r@m, v} =L@, 10, v (B.16)

where use has been made of the formula for the differential of an
integral with t as the lower limit of integration. Substituting equations
(B.13) - (B.16) into equations (B.10) - (B.12) yields the desired reverse
differential equations (3.2.12) - (3.2.14):

-a = H-H(E®w, I, T t) ~ (B.17)
-Jy = H I (- DED, 30, ) (B.18)

e _ T . T T -1 T
Txx T Hxx PIx Txx T xxtx” <H31§+£9_ JEE) [HEE] (Hszy_ stzs)
| (B.19)

where all quantities are evaluated at [X(t), P_*(t), t] unless otherwise
indicated. The dot notation indicates the total differential operation
- with respect to time. Boundary conditions for equations (B.17) - (B.19)
are as given in equations (3.2.15) - (3.2.17), and are stated here for
the sake of completeness:

aft) =0 | (B.20)
T ) = B @ tp) (B. 21)
Txx (tf> = Fyx @ (tf) t) (B. 22)
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APPENDIX C

FORMULATION OF THE REVERSE DIFFERENTIAL EQUATIONS
AND THEIR TERMINAL BOUNDARY CONDITIONS

The form of the Hamiltonian stated in equation (4.3.4) is

H[gm, ut), -g-g t] = L‘[gm, u(t), t]

o '.
+%=I__g [;_;(t), u(t), t] (C.1)

Substitution of equations (4.1.1) - (4.1.4), or (4.1.12), and (4.2, 2) into
this expression yields

— . | — T povan . 0 . . — — 6. —
: 6qc Waq, 0 | 0o qa,
1 0g's 0 Wg's O 0 bg's
H = 2. .
41 5q 0 0 Wgq 0 6q
_E‘QC_ |0 0 0 2VWq_ | | 84, |
B V CcOoSs Y]__-iT]:Hr_- 7]
Ry
wrsgCp * (‘g +m) sin y
e
+ J.x /
] q/v v
gC. + (~g/v+ cos ¥y
W73 L _( Re +H>
| v sin vy | 4 . (C.2)
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The partial differential of f (x(t), u(t), t) of equation (4.1.12)
with respect to the state vector given by equation (4.1.10) is expressed

as:
B (ir)xr (I'!r)v (ir)y G‘r)h 7]
(‘;)x (\'r)v (\'r),y ﬁ’)h
£ = r
—x . . . o
- ('y)Xr G (y),y (¥)y,
(ﬁ)xr (li)v (1’1)7 (ﬁ)h
where
(:'cr)xr = 0
r'v o
(x) = =-Vsiny 1
r'y T+ E?Re
Re
(x), = -VcosYy
h (R, + h)°
("f)x = 0
r

;
. ) __q 2v .
™, = wrs€Cp - wrs€ Cp)y *R_FE SR

. 2
(V)y = -gcosy+-R—V—_i-_-Hcosy
e
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(C. 4)

(C.5)

(C.6)

(C.7)

(C.8) .

(C.9)

(C.10)



i v;}}ggCD-W%gg(cD)h—msmy (C.11)
e
(), =0 (C.12)
r
1 | |
), = W_/_gg SegcCp +w—7-sq/" g8 (Cp)y
+ cos ¥ TT-IT'H*'% cos ¥ (C.13)‘
e v
(‘5/).), = - ’R—ezT-'H sin ¥y +%— siny (C.14)
¥)y = %gEW;?g CL +%/7"§' g (Cply
. ,
~ ———— cOS ¥ {C.15)
(R, +h)
(h)xr = 0 (C.186)
(h) = siny (C.17)
(ﬁ)y = vcos ¥y (C.18)
(), = 0 (C.19)

The partial differential of £ (x(t), j_1_(1:), t) of equation (4.1.12)

with respect to the control vector in equation (4.1.11) is
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"(ig(p (x,) ]
@)y 0y
kS . - (C.20)
- (7)‘p N,
;m% (), |
where
(%), = 0 | - (c.2n
(X, = 0 | (C.22)
(x‘r)‘p = 0 | (C.23)
Wy = - wrge (Cpy -(C.24)
My : ey, (C. 25)
9, = WEecp,  (c.20)
(ﬁ)(p = 0 (C.27)
(B), = 0 ~ (C.28)

The forms of the partial derivatives of the Hamiltonian will
now be derived starting from its basic definition:

H=1L+J_f (C.29)
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Thus

XX

x = by * (Fxf)x
=L + ng:
x
= Dxx
J.T
X
x
=L
XX
u ™ Tat (Tgb)u

=L +Jf
u - “xTu
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(€. 30)
J f
X=X
- Y
J £
X=v
Jggv
ngh _
— = — X
T £
XXX
Txbxv
Txlxy
J_ggh
(C.31)
(c.32)



H = L +([Jf]T)
uy ~ Tuu x~u| Ju
B T
= Ly * £,
JXT
T pelin
__"G.
= Lgu * | Ixbou ‘
J_ £
| “x=ou

Hux = ([HE]T)§

=Dy * f&§g¢
nga
| ¥ %y

= Typ + | Iufus |
| Ixtxa

e

uu

ux

(C.33)

l
1%

(C.34)

The partials of f required by equations'(C.Bl), (C.33),

and (C.34) are now defined:
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where

- 0
0
x|
| 0

i (kr)x \'A (XI‘)VV
W, ¢ O,
| Py v (Nyy

| @, ®
r
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()

(h)

-

By,

(C.35)

(C. 36)

(C.37)

(C. 38)

(C.39)

(C. 40)

(C.41)



'w%-g'g (CD>VV +'IT;2_+—HSin Y

. . 2v
Wyy = R_FHCOS7?

- p 2pv
gy = _mgCD—mg(CD>v

- (C.

Wy = ‘apw7§v eCp-z3Ewrs & Cp )

‘57'5 (CD> W%_g(CD>

(7 )er

Doy = whee o)y + % 8

. - 1 . . ‘
(‘)’),yv" "Fe—_rﬁsm'}’"vgzsm'y
v - 3p Vv '
)y ?ahW%‘SCL*Ta‘EWTSg (L),

+3p wrs (CL>h A S8 (CL>hv

(I:I)X \'4
r

(h)

vv

160

0

L) ey -

————-2- cos ¥
(R, +h)

(C.

E% cos ¥y (C.
v .

(C.

(C.

(C.

42)

43)

. 44)

.45)

46)

. 47)

48)

49)

50)



(-h)‘yv = cos ¥ (C. 51}

(B),, = O o (C.52)
i (:‘:I)xr7 I 3 N e
(Y)xr,y (V)V'y (V)y'y (V)h'y _
fxy = » Ce - . . ‘ . (C. 53)
o Oy By By, Gy,
By, B, B, @),
where
(), y = 0 | (C.54)
r _
. _ . 1
(xr)vy = =8nYy I—_T_-m; (C. 55)
. - 1
(Xr)y‘y = V cos ¥y TTHTFe' (C. 56)
. i Re C.57)
(x.) = Vsinvy ' C.
r’hy (Re +h)2
)y y =0 (C.58)
. - 2v
(V)v'y = —R—e—:’_—ﬁ cos ¥ | (C.59)
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@y, = goiny - piep s
, sin vy
a—

2
v

(V). =
)hy = ———x co
(Re + h) =7 ‘

3y -

XY 0

¥y, = -k
. _ .
“y -F-e—q_—-ﬁsm'y—-%--sin'y
A 3 v

(%)

= ' +
, n - ! g
: ————-HR I cos ¥ cos ¥

(V)h,y = ———-—-——2-V sin
(R, +h) Y
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B (xr)x h (xr) vh
r
“en
f = . ]
- O W C W
r
3 (h)xrh (h) vh
where
(xb)xrh

(xr)yh

(V)yh

(‘)’),yh

®),p

L ) -— a 3 ) p N
Ve = "SE'W%Sg CD'WZYSg (CD)h

0 ,
-%%Ig‘;TS g (CD>V - W?Sg (CD)vh

2v .
- ——— siny
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(C.
(c.
(C.

(C.

(C.
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1 3%2p v2 3p w2
Mun nz /5 9o T W W/S AN
—%— g(cy) sin v
" hn * (Re+h)3
() 0
xrh
¥ =1 9p g 1
Myh = F s ws o+ 2° w?s €y
l3p v /v
* s as 9C) v Y ws 9C vn
- 1 > cos Y
(Re+h)
(¥) = —Y  sin ¥y
Yh (g 4n)2
e
. 1 32p v

_ 1232 3p v
(pn = 3 on2 /8 9C, + 3w w/s 9(C)n

#7s 9(C )y, * ——— cos ¥
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(C.77)

(C.78)

- {(C.79)

(C.80)

(C.81)

(C.82)

(C.83)



where
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0 h—
0
' v
%g g(CL)¢a
0 S
0 ]

(C.84)
(C.85)

(C.86)

(c.87)

(C.88)

(c.89)



(Y gy

(Y)hé

where

("’) vo

(V)ha

(V) gy =

: (§)ha =

' The partials
derived.

_ 1
L=3

+ 2vWg (

a/v

1
= 30 wis (S )4 + F= gl (C.90)
13
= 7R ety + %% gl (C.91)
o 0 0 o |
0o (v 0 (V)
Ve . "ha (C.92)
o 0 0 0 |
%§§ g(cy), - W%§ g(Cp) oy (C.93)
_ 1 3p v _ '
7 38 w7s 9 o ~ s 9 he (C.94)
1 V'
bo s e+ MY 91,
12 s 9(cp) %X 3(C) g (C.96)

of the accrued cost functional L are now

We write equation (4.3.11):

{Wéc(ﬁéc)z + Wg's(8g's)2 + Wq(8qg)?

a,)2} (C.97)
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'Lx is given by equation (4.3.12) as

84, W3, (83 ), + 8g's Wg's(Sg's)

+ 6q Wa(sq), + Ma_(8G,)

Lx.= (C.QB)
- 0
Géc Wc';c(qd.c';c)h + 8g's Wg's(dg's)h
|+ 8a Wa(sq)y + Vg, (84 )y B
From equation (4.3.13), we proceed to obtain
K 0 0
s ' 0 LVV 0 Lvh . ‘
ng = 0 o -O 0‘ (C.99)
0 L, 0 ‘. L,y
where
Low = ch(Gqc)é * sqcrwqc(6ﬁc)vv
+ Wg's(ﬁg's)é + 8g's Wg's(8g's)
+ Wq(sq)2 + 8q Wq(8a)
+ {ﬁa;(gqc)vv’ | | (C.100)
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Lvh = (5qc)h W‘!Ic((sqc)v + Gqc wqc(aqc)vh
+ (6g's)h Wg's(ﬁg‘s)v
+ 8g's Wg's(8g's) , + (Sq)h Wq (8q)

+ 8q Wa(sq) . + YFa,(34,) 4

hv vh

= 2 &
Lyy = WG, (64 )y + 64, WA (89, )y,
+ Wg's(ﬁg's)% + 8g's Wg's(8g's)

+ Wq(8q)3 + 8q Wa(dq)y,

+

Jwac(aqc)hh

From equation (4.3.14) we state

§g's Wg's (5g's)§

i

§g's Wg's (6g's)a
Following equation (4.3.15) we may write

Loo Loa |

uu

La¢ Laa

where
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¢

(1]

od

ac

Equation (4.3.

where

Wg's(&g's); + 8g's Wg's(dg's)¢¢

(8g's) Wg"s(ag's)¢

+ 8g's Wg's(Gg's)¢a

L¢a

Wg's(&g's)é + 8g's Wg's(8g's)

16) leads to

0 L¢V 0 L¢h

ux

0 Lav 0 '.Lah

v (8g's), Wg'S(Gg's)¢
+ 8g's Wg's(ﬁg's)v¢

on = (89'8), Wg's(Sg's),

+ 8g's Wg's(8g's),

(Gg'S)v Wg's(ég's)a

(=
i

av

+ 6g's Wg's(8g's)
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(C.106)

(c.107)
(C.108)

(C.109)

(€C.110)

(C.111)

(C.112)

(C.113)



Lah = (Gg's)h Wg's(Gg's)a

+ 6g's Wg*s(ag's)ha (C.114)

The partial derivatives of the delta terms will now be |
given. Starting with equations (4.1.14) and (4.2.6),

_ .61433466 ( )05 ( v )345 _ 2

we see that

3.15 §_/v | (C.116)

(6ag)y = c
(8, = (3.15) (2.15)4 /v2 (c.117)
84y =3 4. T 52 (C.118)
Gtom - s (b1 (R)) o
P
(8g) p = 252 (qc(vp) 2 - (c.120)

The partials of ch are identical to those fbr sqc as
given by equations (C.116) - (C.120).
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Referring to equations (4.1.5) and (4.2.10) for the
dynamic pressure penalty term,

L
§q = 5 pv? - ql

nax (C.121)
the partial derivatives are:
(§a), = ov (C.122)
(6a),, =p (C.123)
(5aq), = 3 32 v2 (C.124)
(6q5hh =13 (C.125)
3h?2
_ 9p '
(5q)y, = L v | (C.126)

From the delta terms of the acceleration given by
equations (4.2.7) and (4.2.9),

0.5 ’
- 2 2 -
ég's W§§ (CD + CLmax) g's]max (C.127)

the partials are as follows:
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: 0.5
(6g's) = &Y (c 2 4+ C 2)
v W/s D Lmax

(89'8) oy = §7g (CD2

2pv

" WS

* s

1 ap 0.5
(6g's) = e i C 2 + C
h 2 dh W/S ( D Lmax

C(Cy)  + C c
DDy Lmax( Lmax)v

W/s ' 0.5
“max

0.5
2
+ )
max

c.{(CH).. + ¢C C
D D'v Lmax( Lmax)

2
(éD + CL

c.(Cl)._ + C C 2
(oo * o))

1.5
’(CD2 + Cp 2
- max

"C,(CL) + C c
D "D vy Lmax( Lmax)

vv

+ ()2

¢

(C.128)

+ [cC 2
( LmaX)
v

: 0.5
cD2 + C 2
. max

N

C(CL), + C (c )
D"D’h Lmax Lmax h

+
o+
73]

0.5
cD2 + Cp 2
_ max
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» 1 329 5

2 : 0
(6g's),, = = V-{c2 +c 2
hh = 2 . W5 \"p Loas
C.(C.). + C o
b*"D’h Lmax( Fmax)h

3p v2

oh W/S 0s
cD2 + Cp 2
: ; max

c. (Cl, + C C 2
( D'"D’h Lmax( Lmax>h>

- W;S 15
4 C,2 + C 2
D L
R max

C.(C.) + C C
D'"D’hh Lmax( Lmax)

+ w;s

+ (Cp)2 + (FLmax)z

hh h

0.5
(CD2 + Cp 2
max

(C.131)

(8g's)_, = T == (C 2 +C 2
vh oh W/S D Lmax

C.(C), + C c |

+ &Y
W; S : 0.5
C 2 + C 2
D L
max

c.(ch)y_ +¢C c. .
2 DDV ‘Lmax( Lmax)V

v
w/s ( ) 2)&5,
C.2 + C
D Lmax

C(C)_ +C o C_.(C.), + C c '
( D D'v Lmax( Lmax)v>( D D’h Lmax( Lmax)h)

' 15
(CDZ + Cp 2
max
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C (Cl).4 + C C + (Cl) (Cl), + (C C
D'"D’'vh Lmax( Lmax)vh D'v'"D’h L oax ' L oax

0.5
ch + Cp 2
max

h

(C.132)
c C
q Lmax( Lmax> ¢ ’
(8g's), = 773 VT (C.133)
B - (CDZ + CL 2>
max
c. )2 +C (c )
L L L
max max max
(Sg s)d>¢ W/s =
cD2 + Cp 2
max
(o))
L L
max mnax .
- W%g ¢ (C.134)

(8g's) = L o (C.135)

(cH2 + {(c 2 + Cc_(CL) + C C
D' a Lmax y D" D’ aa Lmax Lmax o

WS = -
X 2 2 )
(CD + Cp )

max
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c.(cl) +¢c¢C C 2
( D D' a Lmax( Lmax)q)

15
2 2
v e )
max

c ) (‘c ) +C (c )
L L L L
( max ¢ max a max max ¢0L
0.5
(CDZ + CL 2
: max

c, (c c.(c) +c - [c
Lmax( Lmax)(b( D D' a Lmax( Lmax)a>

15
CDZ + CL 2
max

(C.136)

- e

(89's) 4, = 7i5

-
(C.137)

()
max max

(8g9's) 44 = wys :
<CD2 + C

t
=
[\}]
»

Y
S b
@
wn

(C.138)
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() (o). + fc. \ fc. \ +c.(cl). +c c
p’a{Cply (Lmax>a( Lmax) A R N

(C.139)

' _ 1 \'
(89'S)py = 3 3n 7

C C + Cc. [cC
( Lmax)(b( Lmax>h Lmax( Lmax)h¢

0.5
Cy2 + C 2)
D L
max

(C.140)

CD(CD)a + CL CL
V2 max

oh W/S a(

max>
]
0.5
2 2
)
max
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(6g's)ha =



C.(C.). + C c cy(Ch) c
( D D'h Lmax(» Lmax) )( D Lmax(‘Lmax) )
h o
0.5
(CDZ + Cp 2
’ max
(C ) (C ) C C + Cc.(cl) + C C
D'h ( Lmax)a( Lmax)h b D ha Lmax Lmax ho‘

0.5
CDZ + CL 2
max

R

*w/s

(C.141)

Terminal boundary conditions for the reverse differential
equations (4.3.1) - (4.3.3) are stated in equations (4.3.17) -
(4.3.19), in which '

[ 1T
W 6x
Xr r
W _Sv _
Fy = - (c.142)
W_ Oy
L._thSh tf
and
Wx 0 0 0
r
' . _ 0 W, 0 0
F._ = ([F ] ) = (C.143)
£X X
3 0 0 W 0
. Y
0 0 0 Wh .
o 1 -f
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where

Sv

]
cnrt”™

V .
]desired max

v

]desired min

]
desired max

Y]
desired min

at t

at

at

at

178

if x > x7
1 r r

desired max at'tf desired

if x < x_]
r r

desired min at tf ‘ 4 desired

otherwise

if v > v]
desired max

if v < v]
desired min

otherwise

ifY>Y]
desired max

if v < Y]
desired min

otherwise

max at tf

min at t

(C.144)

at t

at t

(C.145)

at t

at t

(C.146)



-

(h - h if h > h]

]desired max at tf desired max at tf

sh=<h-'h] ifh‘<h]

desired min at t. desired min at t.

L .0 otherwise

(C.147)

as given by equations (4.2.12) - (4.2.15). All terms in
equations (C.142) --(C.147) are evaluated at the terminal
time, t.. ' ' ' ’
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APPENDIX D

CONTROLLABILITY AND OBSERVABILITY OF THE FORMULATION

To examine the cdntrollability and deterministic observability of
the system formulation, the second partial reverse differential
qu (4- 3. 3),

. - T

“xx T rxIx Jxx T xxix
T T -1 T .
“Hax T Txx) Fay) (yg *2u" Tyy) (0.1

must be converted into the standard form for a matrix Riccati equation:

T

S = -8F - FIs +sgB lgT

S-A (D. 2)

with an appropriate terminal boundary condition, and where

S = J.’E_’E (D. 3)
F = (f -f 1y ) » (D. 4)
—X —uuu ux
-1 T -1, T
GB™ G = £ Hy, f (D. 5)
- _ T -1
A = Hey uxX uu ux (D-8)



The corresponding new time-varying linear system is described by the
state equation |

X = F(t) Xew + G(t) 4.

Xew (D. 1)

w

The controllability of the formulation is signified by the positive
definiteness of the following integral:

-1

- t c '
S &(r, t)GBLIGT & (r, t)dr  (D.8)
t o o .

o
where & (T, t ) is the new system transition matrix.

Though GB -G

(D. 8) may integrate to a non-singular term over a finite amount of time

is not of maximum rank, the integrand of Eq.
to yield a controllable system.

Similiarly, the observability of the formulation is determined by
the positive definiteness of

t |
S o7 (r, t) ulalue(r, t ) dr D. 9)
t .o

(o]

where H A™'H is the weighting matrix on the state. This we know to be

a diagonal positive definite matrix which yields a positive definite
integral in Eq. (D.9), thus verifying the complete observability in the

deterministic sense of the system formulation.
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APPENDIX E

MAC - 360

MAC is a pseudo-language designed and implemented at the
Draper Laboratory of the Massachusetts Institute of Technology to
simplify the task of programmer communication with the computer
of the mathematics of space mechanic SU— . MAC combines the English
language with standard algebraic notation into a form which approximates

the scientist's or engineer's own language.

The basic MAC feature is a three-card-per-line format,
corresponding to the three-levels-per-line of ordinary algebraic
notation. For example, the expression

2y = b
would appear in MAC as:
E 2 DE
M ‘ A =B C
S K K

"-"  on the E-line over a variable

[ RFOR ]
3k

Further, the incorporation of a bar,
name denotes a vector, while a star, , over a variable would define
a matrix, both being of an appropriate dimension as defined at the

beginning of each program.

Another feature of MAC is the DIFEQ statement, which enables
an integration operation in the numerical solution of differential '

equations. An approximate solution to these is accomplished by a
‘ 183



four step Runge-Kutta routine. Logical adjacency of variables separated
by a space or some other appropriate delimiter indicates a multiplication,

while addition, subtraction, and division are simply denoted by +, -,
and /.

This brief introduction to MAC should enable one to follow the
logic of the programs as given in Appendix F. For a more detailed

explanation, refer to the '"Users Guide to MAC - 360" as cited in the
bibliography.
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APPENDIX F

| OPTIMIZATION ALGORITHM COMPUTER PROGRAM LISTINGS
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